23.11.2011 1

Introduction to R and Bioconductor:

Computer Lab

Bjorn-Helge Mevik (b.h.mevik @usit.uio.no),

Research Computing Services, USIT, UiO

(based on original by Antonio Mora, biotek)

Exercise 1. Fundamentals of R

R has been defined as “a language and environment for statistical computing and

graphics” [1]. R is free and open-source and it has been extended through packages. If

you don't have it installed in your computer, you can download it.

For Windows machines, go to http://cran.ii.uib.no/bin/windows/base/, download

the file and follow the instructions.
For Linux machines, go to http://cran.r-project.org/src/base/R-2/ and get R's

source code (R-2.14.0.tar.gz); decompress it and install it (use: “configure
--prefix=/your-path/R --with-tcltk --without-cairo --with-libpng —with-jpeglib”,
then “make” and “make check™). Note that R is in the package repository of many
Linux distributions, so check with your yum or apt-get!

(Notice that /your-path/ specifies the path from the root directory to the R
directory. In Windows can be something like: C:/Program Files/R/ In Linux,
something like /usr/local/R/)

A tutorial can be found typing “help.start()”. However, we will review the main

features:

Start and quit: You can start R in Windows just like any other Windows
application; to start R in Linux, type “R” in a terminal (assuming that R is already
on your path); the R prompt will appear. To quit, type “q()”.

Ordinary arithmetic operators: After the R prompt, type some arithmetic
calculations (using +, -, *, / and #, grouped with parenthesis). See the way in which
R displays the results. Try:

> sqrt(2)

http://cran.ii.uib.no/bin/windows/base/
http://cran.r-project.org/.and

23.11.2011 2

> sin(pi)

> exp(1)

> log(10)

> log(10, base = 10)

Try writing two arithmetic operations separated by a semicolon; see how R shows
both results.

+ Assign value to a variable: Use “<-"; for instance:
>a<-5
>a<-5+2
Now, type “a”. Now, try a + 2. What happens if you try a + b?

- List variables: To list all current variables in the workspace, type: “Is()”. Which
variables are present in your workspace so far?

« Help: “?” is useful to access the help. For instance, “?mean” shows information
about the “mean” function; ?rep describe a function to create a vector of repeated
elements. Use “? function-name” each time you don't understand the goal of a

(Y2

function. Read the help using the space bar and quit help using “q”.
+ Use the up and down arrow keys to access the command history.

« Creating a vector: Vectors have elements of the same type. For instance:
>vec<-c(2,3,4)
The first element of the vector is considered to be at position 1. Therefore, you can
check the second element of this vector using vec[2]. Create two vectors “a” and
“b” with at least three elements each and join them using d <- c(a, b). Try:
> d[1:3]
>d[d < 4]
What do you observe?. Try vec[-1] and you should get everything but the first
element.

+ Creating a list: Lists can have elements of different types. For instance:
> 1 <- list(1, 2, "hi")
Check the third element of the list using 1[[3]]. We can also create a named (hash-
like) list:
>m<-listta=1,b=2,d="hi")
Now, you can extract the value for “b” using the “$” sign:
> m$b

23.11.2011 3

Printing: Use print() or just type the name of the variable. Try printing a and m.
> print(a)
> print(m)

'If' and 'For": Try the following examples:
if (1 > 0) print("hello")

for (iin 1:5) { print(i) }

for (iin list("a", "b", TRUE)) { print(i) }
What are these commands doing?

Creating a matrix: Try:

> mat <- matrix(1:9, nrow = 3, ncol = 3)

How does the matrix look like?

Now try:

> for (i in 1:3) { print(mat[i, 3]) }

What happened here?

Other ways to get the same result are: mat <- cbind(c(1,2,3), c(4,5,6), ¢(7,8,9)), or:
mat <- rbind(c(1,4,7), c(2,5,8), ¢(3,6,9)), where “cbind” stands for “column bind”
and “rbind” stands for “row bind”.

We can give names to a matrix using:

> rownames(mat) <- ¢("Obs1", "Obs2", "Obs3")

> colnames(mat) <- ¢("Varl", "Var2", "Var3")

Data Frames: Data frames contain several variables (columns) and several
experimental units (rows). Try:

> dl <- data.frame(x = 1,y = 1:10)

Check d1. What does d18$y give you?

Plot: You can plot using a variety of options. Try, for instance:

> plot(x = 1:10)

> plot(x = 1:10, y = (1:10)*2)

> plot(x = 1:10, y = (1:10)*2, type = "p", col = "red", main = "My Graph",
peh="+")

Now try the last exercise with type = "1".

Use “demo(graphics)” to see many plotting options.

dev.new(): Try the following plot:

> for (iin 1:5) { plot(i:10) }

What happens? Now, add the “dev.new()” call:
> for (iin 1:5) {dev.new(); plot(i:10) }

23.11.2011 4

What difference can you observe? What is dev.new() doing?

Save and Load workspace: It is possible to save all variables in the workspace to
use them later. Use:

> save(a, vec, mat, file = "variabs.RData")

Quit the R program as explained before (specify that you don't want to save the
workspace) and re-enter. Check that there are no variables using Is() and now load
the variables that you just saved using:

> load("variabs.RData")

Check that “a”, “vec” and “mat” are now in your workspace.

Read and write text: The working directory (i.e., the directory where the files you
produce will be stored) can be get or specified using “getwd()” and “setwd()”,
respectively. Find out where is your working directory.

Now, we will create a text file containing the matrix that we called “mat”:

> write.table(mat, "mytable.txt")

Check that a file called “mytable.txt” was generated at the working directory. In
order to read this file, we can use the read.table() function:

> ¢ <- read.table("mytable.txt")

Check “c”, rownames(c) and colnames(c).

Several options to read and write are included in the documentation; f.ex.,
append=TRUE will add the information to an existing file.

Now you will open the table using the R editor:

> cnew <- edit(c)

Change some values at the editor and press “Quit”. Now check your changes in
“cnew”.

Try:

> cnew$Varl

> cnew|, 2]

> cnew|[3, |

> c[c$Varl=="3",]

What happened in each case?

Creating a function: Use: function(args) { exprs }. For instance:
> suma <- function(a, b){ a+ b }

Now, try:

> suma(l, 2)

Another example:

> suma? <- function (a, b) { print(a); print(b); a+b }

Check suma2(2, 3)

23.11.2011 5

Scripts: You don't have to type all your commands in the command line every time
you need it. For repetitive tasks, you can create scripts using a text editor such as
notepad: Copy some of the exercises you have already done to a text file (do not
include the “>” symbol) and save it at your working directory as “name-of-the-
script.R”. Then run it using: source(file = "name-of-the-script.R").

Some words on packages:

Packages: Functions belong to packages. The base R distribution comes with a
library of packages, and it is possible to install other packages in the library. If you
want to use a function from a certain package, the package must be already
installed and loaded. Check which packages are installed in you library with the
command library().

Bioconductor is a group of packages for bioinformatics. Check the available
packages at: http://www.bioconductor.org/packages/release/bioc/.

After installation, you can load any of the installed packages from the library in
order to add their functionalities, using: library(name-of-the-package).

Some packages also include a “data” directory, containing data to be used as an
example. Data sets are stored as “data frames”. data() will list all available data sets
in your loaded packages; data(package="GO") list data sets for the GO package;
data("CO2") loads the data set CO2, while names(CO2) gives us all variables in
the data set (after it has been loaded); we can check each variable using “data-
set$variable-name”, as in CO2$Type.

Optional:
Regular expressions:
Try the following code and find out what is doing:

> grep("[a-z]", letters)

> txt <- c("arni, "foot", "l ef roo", "baf oobar",
"gorilla", "armadillo", "far", "tate")
> | <- grep("foo",txt)

> txt[i]

> p=grep("~l.*", txt)

> txt[i]

> j=grep("~f[oa]",txt)

> txt[i]

> i=grep("~[fg][oa]", txt)

> txt[i]

http://www.bioconductor.org/packages/release/Software.html

23.11.2011

Exercise 2. Statistics using R

Here we will give a very short introduction to some basic statistics concepts. For a

more in-depth study, check any statistics book including R code. First, we will use

basic descriptive statistics with R. Type:

> x <- 1:20

Sums:
Z X=x,+x,+...+Xx,

>nsurr(x)

Cumulative sum:

5= %
Jj=Li

> cumnmsuni X)
Range:
Minimum and maximum value

> range(x)

Variance:

23.11.2011 7

> var (x)

The standard deviation is the square root of the variance:

s=\o
> sd(x)
> sqrt(var(x))

To get the number of times of each experimental datum:
> tabl e(x)

A bar plot could be useful to visualize data. Try:

> barpl ot (x, xlab="observation”, ylab="val ue")

> dev. new()

> barplot(table(x), xlab="value", ylab="frequency")

R is also popular for probability theory. Here, we will try some simple examples.

In order to randomly select one element of a vector, where each element has a certain
Ce_ 9%

probability “p” of being chosen, we use the “sample” function. For example, to roll a

fair die, try:
> sanple(1:6, size = 1)
You will get numbers from 1 to 6 with the same probability each time.

If each element has a different probability, as in a loaded die, try:
> k <- 1:6

>p <- ¢(0.50.1,0.1,0.12,0.1,0.1)

> sanple(k, size =1, prob = p)

Here, it is more probable to get the number 1.

Let's toss a coin 10 times. Say that heads=1 and tails=0, and, given that these options

are kept during the whole process, it is said that there is “replacement”, so:
> sanpl e(0: 1, size = 10, replace = TRUE)

(If replacement is set to FALSE, it means that, after the first trial (0 or 1), we just have
one option left (1 or 0) and, then, the population will disappear, i.e., the size can't be
bigger than 2).

Write the code for choosing 30 cards from a deck, given that you remove the card
after choosing it (replace=FALSE) and given that you return the card each time
(replace=TRUE).

23.11.2011
References

[1] R website, http://www.r-project.org/,
[2] VERZANI, J., Using R for Introductory Statistics, Chapman & Hall / CRC, 2005

http://www.r-project.org/

