
Microarray data analysis using R/Bioconductor

St̊ale Nyg̊ard
Bioinformatics core facility, OUS/UiO

stale.nygard@medisin.uio.no

September 08, 2010

Material partly adapted from Anja von Heydelbreck.

Contents

1 Before you start 1

2 Reading in data and pre-processing 2

3 Looking at a subset of samples 2

4 Data filtering 3

5 Differential expression 3

6 Annotation 4

7 Using Gene Ontology 5
7.1 Gene set enrichment analysis using topGO 5

1 Before you start

...you need to install a few libraries from Bioconductor. Type the following
commands

source("http://bioconductor.org/biocLite.R")

biocLite(c("affy","ALL","annotate","hgu95av2.db","multtest","topGO","genefilter"))

This will take a few minutes.

1

2 Reading in data and pre-processing

The data used for this exercise come from a study of Chiaretti et al. (Blood
103:2771-8, 2004) on acute lymphoblastic leukemia (ALL), which was con-
ducted with HG-U95Av2 Affymetrix arrays. The data package ALL contains
an ExpressionSet object called ALL, which contains the expression data that
were normalized with rma (intensities are on the log2scale), and annotations
of the samples.

Load the ALL package. What is the dimension of the expression data
matrix?

library(ALL)

data(ALL)

dim(exprs(ALL))

For this exercise, you can now go directly to the next section. If you need
to do the pre-processing yourself, a quick way of doing this is the following:

1. Create a directory, move all the relevant CEL files to that directory.

2. Start R in that directory.

3. If using the Rgui for Microsoft Windows make sure your working direc-
tory contains the CEL files (use ”File − > Change Dir” menu item).

4. Pre-process the data using the method gcrma.

library (gcrma) #load the gcrma package

5. Make a tab-delimitted text file target.txt with the first column hav-
ing the names of the CEL files, and the next columns describing the
samples on each file (e.g. treatment, strain, sex etc.).

6. Read in the data and create an expression set.

pd <- read.AnnotatedDataFrame("target.txt",header=TRUE)

Data <- ReadAffy(filenames=rownames(pData(pd)),phenoData=pd)

eset <- gcrma(Data)

3 Looking at a subset of samples

We want to look at the B-cell ALL samples (they can be identified by the col-
umn BT of the ExpressionSet ALL). Of particular interest is the comparison
of samples with the BCR/ABL fusion gene resulting from a translocation of
the chromosomes 9 and 22 (labelled BCR/ABL in the column mol.biol of the

2

ExpressionSet ALL), with samples that are cytogenetically normal (labelled
NEG).

Define an ExpressionSet object containing only the data from the B-
cell ALL samples. How many samples belong to the cytogenetically defined
groups?

table(ALL$BT)

table(ALL$mol.biol)

subset <- intersect(grep("^B", as.character(ALL$BT)),

which(as.character(ALL$mol.biol) %in% c("BCR/ABL", "NEG")))

eset <- ALL[, subset]

eset$mol.biol <- factor(eset$mol.biol)

table(eset$mol.biol)

4 Data filtering

Many of the genes on the chip wont be expressed in the B-cell lymphocytes
studied here, or might have only small variability across the samples. We
try to remove these genes (more precisely: the corresponding probe sets)
with an intensity filter (the intensity of a gene should be above 100 in at
least 25 percent of the samples), and a variance filter (the interquartile range
of log2-intensities should be at least 0.5). We create a new ExpressionSet
containing only the probe sets which passed our filter. How many probe sets
do we get?

library(genefilter)

f1 <- pOverA(0.25, log2(100))

f2 <- function(x) (IQR(x) > 0.5)

ff <- filterfun(f1, f2)

selected <- genefilter(eset, ff)

sum(selected)

esetSub <- eset[selected,]

5 Differential expression

Now we are ready to examine the selected genes for differential expression
between the BCR/ABL samples and the cytogenetically normal ones.

We use the two-sample t-test to identify genes that are differentially
expressed between the two groups. The function mt.teststat from the
multtest package allows to compute several commonly used test statistics
for all rows of a data matrix (study its help page). First, we calculate the
nominal p-values. The function pt gives the distribution function of the t-

3

distribution. We can get an impression of the amount of differential gene
expression by looking at a histogram of the p-value distribution.

library(multtest)

cl <- as.numeric(esetSub$mol.biol == "BCR/ABL")

t <- mt.teststat(exprs(esetSub), classlabel = cl, test = "t.equalvar")

pt <- 2 * pt(-abs(t), df = ncol(exprs(esetSub)) - 2)

hist(pt, 50)

The function mt.rawp2adjp from the multtest package contains different
multiple testing procedures. Look at the help page of this function. For p-
value adjustment in terms of the FDR, we use the method of Benjamini and
Hochberg. How many genes do you get when imposing an FDR of 0.1?

pAdjusted <- mt.rawp2adjp(pt, proc = c("BH"))

sum(pAdjusted$adjp[, "BH"] < 0.1)

Also, this function returns the adjusted p-values ordered from the smallest
to the largest. To obtain the original ordering, we do:

pBH <- pAdjusted$adjp[order(pAdjusted$index), "BH"]

names(pBH)<-featureNames(esetSub)

6 Annotation

Now we want to see which genes are the most significant ones, and look at
their raw and adjusted p-values from the different methods. Gene symbols
are provided in the annotation package hgu95av2.

library(annotate)

library(hgu95av2.db)

diff <- pAdjusted$index[1:10]

genesymbolsDiff <- unlist(mget(featureNames(esetSub)[diff], hgu95av2SYMBOL))

genesymbolsDiff

The top 3 probe sets represent the ABL1 gene, which is affected by the
translocation characterizing the BCR/ABL samples. Now we want to see
whether there are further probe sets representing this gene, and whether
these have been selected by our non-specific filtering.

geneSymbols = unlist(mget(featureNames(ALL), hgu95av2SYMBOL))

ABL1probes <- which(geneSymbols == "ABL1")

selected[ABL1probes]

4

So the other probe sets representing ABL1 have been filtered out because
of low intensities or low variance. Now we want to see whether they also
indicate differential expression of the ABL1 gene.

tABL1 <- mt.teststat(exprs(eset)[ABL1probes,], classlabel = cl,

test = "t.equalvar")

ptABL1 <- 2 * pt(-abs(tABL1), df = ncol(exprs(esetSub)) - 2)

sort(ptABL1)

We see that only three out of the six ABL1 probe sets show evidence (in
fact, very strong evidence) for differential expression! It might be interesting
to further investigate the ABL1 probe sets regarding e.g. their location in
the ABL1 transcript sequence - indeed the BCR/ABL fusion gene resulting
from the translocation differs from the normal ABL1 gene.

7 Using Gene Ontology

Many of the effects due to the BCR/ABL translocation are mediated by
tyrosine kinase activity. Lets look at the probe sets that are annotated
at the GO term protein-tyrosine kinase activity, which has the identifier
GO:0004713.

gN <- featureNames(esetSub)

tykin <- unique(unlist(lookUp("GO:0004713", "hgu95av2", "GO2ALLPROBES")))

str(tykin)

sel <- (gN %in% tykin)

We can now check whether there are more differentially expressed genes
among the tyrosine kinases than among the other genes. Fishers exact test
for contingency tables is used to check whether the proportions of differen-
tially expressed genes are significantly different in the two gene groups.

tab <- table(pt < 0.05, sel, dnn = c("p < 0.05", "tykin"))

print(tab)

fisher.test(tab)

7.1 Gene set enrichment analysis using topGO

We now want to look for enrichment in differential expression in all GO
categories, not just protein-tyrosine kinase activity. The topGO package is a
nice tool for gene set enrichment analysis based on GO.

library(topGO) #load the package

We will need a function which selects differentially expressed genes. We
define the following function:

5

topDiffGenes <- function(allScore) return(allScore < 0.05)

We are then ready to make a topGO object. We will look at the molecular
function (MF) ontology.

GOdataMF <- new("topGOdata", ontology = "MF",

allGenes = pBH, geneSel = topDiffGenes, annot = annFUN.db,

affyLib = "hgu95av2.db")

We can then run a classic Fisher test on all biological processes:

resultFisher <- runTest(GOdataMF, algorithm = "classic", statistic = "fisher")

or using some other methods (see Alexa et al, Bioinformatics, 2006, 22(13):1600-
1607):

resultKS<- runTest(GOdataMF, algorithm = "classic", statistic = "ks")

resultFisher.elim<- runTest(GOdataMF, algorithm = "elim", statistic = "fisher")

resultKS.elim<- runTest(GOdataMF, algorithm = "elim", statistic = "ks")

To display the results:

allRes <- GenTable(GOdataMF, classicFisher = resultFisher,

classicKS = resultKS,elimFisher = resultFisher.elim, elimKS = resultKS.elim,

orderBy = "elimKS", ranksOf = "classicFisher", topNodes = 20)

allRes

We want to look up the genes in one of the GO categories. The function
printGenes is made for this task. Let’s take protein tyrosine kinase activity
(GO:0004713) as an example.

gt <- printGenes(GOdataMF, whichTerms = "GO:0004713", chip = "hgu95av2.db",

numChar = 40)

gt

To read more about the topGO package, go to
http://www.bioconductor.org/packages/devel/bioc/html/topGO.html

6

