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Biological question
Differentially expressed genes
Sample class prediction etc.

Testing

Biological verification 
and interpretation

Microarray experiment

Estimation

Experimental design

Image analysis

Normalization

Clustering Discrimination

R, G

16-bit TIFF files

(Rfg, Rbg), (Gfg, Gbg)



patients (10-300) 

genes
(20000)

…. covariates

- number of months to recovery
- yes/no distant metastases within 5 years
- other endpoints: censoring, end of study etc.

DATA

…



Huge amounts of simultaneous comparisons are necessary.

Find differences between two (or more) varieties  
• find differentially expressed genes
• find SNP patterns associated with one variety but not with the other

Each single comparison is easy to do. 

Problem: 

Tests are dependent (co-regulation), but we do not know the dependency structure. 
The effective number of independent tests is unknown.
Difficult to control multiplicity!

The problem is unknown dependence.



Sparsity of the solution

Often, we expect that only a small subset of comparisons will have a positive result: 
the solution is very sparse in the huge parameter space. 

• FDR controls unstructured sparsity.
• Sometimes, additional information is available on structure of the sparse solution.

Then, one can develop methods that 
- exploit available a priori knowledge,
- merge different data sets, each adding information.



fMRI & Multiple Comparisons

• Massively Univariate Modeling
– Fit a model at each volume element (voxels)
– Create images showing statistical significance

• Which of 100,000 voxels are significant?
– For α=0.05 ⇒ 5,000 false positives!

t > 0.5 t > 1.5 t > 2.5 t > 3.5 t > 4.5 t > 5.5 t > 6.5



Illustration:

Signal

data = Signal+Noise

Noise

cortesy by Thomas Nichols



very conservative, few false positives, many false negatives

Controlling by Bonferroni at α =0.1

Controlling False Discovery Rate at at α =0.1

More false positives, much less false negatives (lost voxels)



• 8 treatment and 8 control mice

• 16 hybridizations: liver mRNA 
from each of the 16 mice (Ti , Ci ) is 
labelled with Cy5, while pooled 
liver mRNA from the control mice 
(C*) is labelled with Cy3.

• Probes: ~ 6,000 cDNAs (genes), 
including 200 related to lipid 
metabolism.

Goal: To identify genes with altered expression in the livers of 
Apo AI knock-out mice (T) compared to inbred control mice (C).

Apo AI experiment 
(Matt Callow,Berkley; Circulation 1995)
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Which genes have changed?

1. For each gene and each hybridization (8 ko + 8 
ctl), use M=log2(R/G).

2. For each gene compute the t-statistic:

average of 8 ko Ms - average of 8 ctl Ms
sqrt(1/8 (SD of 8 ko Ms)2 + (SD of 8 ctl Ms)2)

3. Do a normal qq-plot; look for values “off the line”.



Normal qq-plot of t-statistics

ApoA1



(What is a normal qq-plot?)
We have a random sample, say ti, i=1, …,n, which we believe 
might come from a normal distribution. 
If it did, then for suitable  μ and σ,  Φ((ti-μ)/σ), i=1,…n would be 
uniformly distributed on [0,1], where  Φ is the standard normal 
distribution. This means that for the order statistics of the t-
sample, t(1) < t(2) <…. <t(n) , Φ((t(i) -μ)/σ) should be approximately 
equal to i/n. This is the same as saying that we expect t(i) to be 
equal to σΦ-1(i/n) + μ.  
Thus if we plot t(i) against Φ-1(i/n), we might expect to see a 
straight line of slope about σ with intercept about μ.
This is our normal q-q plot.
When some of the samples do not seem to be on that line, these 
data points might NOT arise from the normal distribution.



Why do a normal q-q plot?
One of the things we want to do with our t-statistics is to identify 
the extreme ones. 
It is natural to rank them, but how extreme is extreme? 
Converting ranked t’s into a normal qq-plot is a great way to 
see the extremes: they are the ones that are “off the line”, at 
one end or another. This technique is particularly helpful when 
we have thousands of values. Of course we can’t expect all 
differentially expressed genes to stand out as extremes: many 
will be masked by even more extreme random variation. 



Gene annotation
Apo AI

EST, weakly sim. to STEROL DESATURASE

CATECHOL O-METHYLTRANSFERASE

Apo CIII

EST, highly sim. to Apo AI

EST

Highly sim. to Apo CIII precursor

similar to yeast sterol desaturase

First 12 Largest T-Statistics  

 

1. The t-statistics were ranked according to their absolute values. 

T-Statistic 

-20.6 

-12.5 

-11.9 

-11.7 

-11.4 

-11.3 

-7.8 

-7.4 

 5.0 

-4.5 

-4.5 

-4.4 

Discoveries are further studied; negative results are usually igDiscoveries are further studied; negative results are usually ignorednored



Steps to find diff. expressed 
genes

1. Formulate a single hypothesis testing strategy
2. Construct a statistic for each gene
3. Compute the raw p-values for each gene by 

permutation procedures or from (normal) 
distribution models

4. Consider the multiple testing problem
a. Find the maximum # of  genes of interest
b. Assign a significance level for each gene



p-values
The p-value p is the probability of getting a test statistic as 
or more extreme than the observed one, under the null 
hypothesis H of no differential expression.

In order to compute the p-value, we need to know the 
distribution of the statistics t. 

If we would have very many independent samples, then 
asymptotic theory would assure that t is t-distributed. 

It is however unwise to assume that its null distribution is 
that of Student’s t.  We have another way to assign p-
values: using permutations.



Computing p-values by permutations
We focus on one gene only. For the bth iteration, b = 1, ⋅⋅⋅ , B;

1. Permute the n data points for the gene (x). The first n1 are 
referred to as  “treatments”, the second n2 as “controls”.

This is a wrong data set,  
but if there was no 
difference between  
treatments and controls, 
it would be ok.

2. For each gene, calculate the corresponding two sample         
t-statistic, tb.

After all the B permutations are done;

3. Put p = #{b: |tb| ≥ |treal data|} / B



Combinatorics: too many!

Minimum number of permutations: equal to the square of the number of 
objects to be permuted.

A default value: I use the cube of the number of objects to be permuted,
for example.

All permutations? How many permutations?



Sequential Permutation

is an old idea of Besag and Clifford. 

The method continues to sample until the sampled statistics T is w = 20 of 
times larger (or smaller, depending on null hypothesis) than the observed 
value of the same statistics. 
The choice of w can be changed and is critical. 

Thus we use more times for large sampled statistics (which lead to small p-
values) and do rapidly when the test is not leading to significance.

Sequential MC produces p-values that can be adjusted by FDR. 

It is an open research problem to nd optimal values of w, as this would depend 
on the critical value for signicance.

Too large values of w would imply a too precise estimation of p-values which 
are very small. Too small values, would make
the estimate inaccurate. 



 First 12 Largest T-Statistics  

 

T-Statistic P-Value  

-20.6 7.0*10-12 

-12.5 5.6*10-9 

-11.9 1.1*10-8 

-11.7 1.3*10-8 

-11.4 1.8*10-8 

-11.3 1.9*10-8 

-7.8 1.8*10-6 

-7.4 3.6*10-6 

 5.0 1.8*10-4 

-4.5 4.6*10-4 

-4.5 4.9*10-4 

-4.4 6.5*10-4   
 

1. The t-statistics were ranked according to their absolute values. 

Neglecting multiplicity issues, i.e. working at 
the individual 0.05 level, would identify, 
on the average, 6000*0.05=300 
differentially expressed genes, 
even if really no such gene exists.

Doing Bonferroni adjustment leads to
8 differentially expressed genes.



Many tests: what is the problem?
Simulation to illustrate it.

Example: assume we have 30 000 independent genes on a microarray
and not a single gene is truly differentially expressed. 
If we reject the null hypothesis at level 0.01, we still expect 30000*0.01=300 
to have by chance a p-value below 0.01.

We create a simulated data set, where nothing is differentially expressed, and 
then we compute the t statistics and the p-values. No gene should be found as 
differentially expressed.

Simulation of 6,000 genes with 8 treatments and 8 controls. 
All the gene expression values were simulated i.i.d from a N (0,1) distribution, 

i.e. NOTHING is differentially expressed in our simulation.

We show the 10 smallest permutation p-values. 



gene t p-value
index value (unadj.)
2271 4.93 2×10-4

5709 4.82 3×10-4

5622 -4.62 4×10-4

4521 4.34 7×10-4

3156 -4.31 7×10-4

5898 -4.29 7×10-4

2164 -3.98 1.4×10-3

5930 3.91 1.6×10-3

2427 -3.90 1.6×10-3

5694 -3.88 1.7×10-3

Unadjusted p-values

Clearly we can’t just use standard p-value thresholds of 0.05 or 0.01.



MA plot
T-test





Multiple testing: Counting errors

Testing m genes: H1, H2, ⋅⋅⋅, Hm .

m0 = # of null hypotheses which are true   

R = # of rejected null hypotheses



Hypothesis Truth vs. Decision
# not rejected # rejected totals

# true H U V m0

# non-true H T S m1

totals m - R R m

Truth
Decision

V  =  # Type I errors [false positives]

T =  # Type II errors [false negatives]



Type I (False Positive) Error Rates
• Per-family Error Rate

PFER = E(V)

• Per-comparison Error Rate
PCER = E(V)/m

• Family-wise Error Rate

FWER = p(V ≥ 1)

• False Discovery Rate
FDR = E(Q), where
Q = V/R if R > 0; Q = 0 if R = 0

# not rejected # rejected totals

# true H U V (F +) m0

# non-true H T S m1

totals m - R R m



Strong vs. Weak Control

• All probabilities are conditional on which 
hypotheses are true

• Strong control refers to control of the number of 
F+, ie. Type I error rate; under any combination
of true and false null hypothesis

• Weak control refers to control of the number of 
F+ only under the complete null hypothesis (i.e. 
all null hypothesis are simultaneously true, there 
is no interesting gene)

• In general, weak control without other 
safeguards is unsatisfactory



Comparison of Type I Error Rates

• In general, for a given test and data set,

PCER ≤ FWER ≤ PFER,
and

FDR ≤ FWER,

with FDR = FWER under the complete null
We will see that Bonferroni controls FWER.



• If interest is in controlling, e.g., the FWER, the 
adjusted p-value for hypothesis Hj is

pj
*

such that if we reject hypothesis Hj
when pj

* ≤ α, then overall FWER is equal to α

FWER  =  Pr(# of false discoveries >0) =  Pr(V>0)

Adjusted p-values



Some Advantages of 
p-value Adjustment

• Test level (size) α does not need to be 
determined in advance

• Some procedures most easily described in 
terms of their adjusted p-values

• Procedures can be readily compared
based on the corresponding adjusted p-
values



A Little Notation

• For hypothesis Hj, j = 1, …, m
observed test statistic:  tj
observed unadjusted p-value:  pj

• Ordering of observed (absolute) tj:  {rj}
such that |tr1| ≥ |tr2| ≥ … ≥ |trG| 

• Ordering of observed pj:  {rj}
such that |pr1| ≤ |pr2| ≤ … ≤ |prG| 



Control of the FWER

• Bonferroni single-step adjusted p-values
pj* = mpj

• Holm (1979) step-down adjusted p-values
prj* = maxk = 1…j { (m-k+1)prk }

• Hochberg (1988) step-down adjusted    p-
values (Simes inequality)

prj* = mink = j…m {(m-k+1)prk}



Control of the FWER

• Westfall & Young (1993) step-down minP
adjusted p-values
prj* = maxk = 1…j { prob (maxl∈{rk…rm} Pl ≤ prk ⏐H0

COM )}

• Westfall & Young (1993) step-down maxT
adjusted p-values

prj* = maxk = 1…j { prob (maxl∈{rk…rm} |Tl| ≥ |trk| ⏐H0
COM )}



Westfall & Young (1993) 
Adjusted p-values

• Step-down procedures:  successively 
smaller adjustments at each step

• Take into account the joint distribution of 
the test statistics

• Less conservative than Bonferroni, Holm, 
or Hochberg adjusted p-values

• Can be estimated by resampling but 
computer-intensive (especially for minP)



gene t unadj. p minP plower maxT
index statistic (×104) adjust. adjust.
2139 -22 1.5 .53 8 × 10-5 2 × 10-4

4117 -13 1.5 .53 8 × 10-5 5 × 10-4

5330 -12 1.5 .53 8 × 10-5 5 × 10-4

1731 -11 1.5 .53 8 × 10-5 5 × 10-4

538 -11 1.5 .53 8 × 10-5 5 × 10-4

1489 -9.1 1.5 .53 8 × 10-5 1 × 10-3

2526 -8.3 1.5 .53 8 × 10-5 3 × 10-3

4916 -7.7 1.5 .53 8 × 10-5 8 × 10-3

941 -4.7 1.5 .53 8 × 10-5 0.65
2000 +3.1 1.5 .53 8 × 10-5 1.00
5867 -4.2 3.1 .76 0.54 0.90
4608 +4.8 6.2 .93 0.87 0.61
948 -4.7 7.8 .96 0.93 0.66

5577 -4.5 12 .99 0.93 0.74
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False discovery rates (FDR)

FDR = E(V/R | R>0)
We know R but not V!
FDR is not exactly computed, but estimated.

Benjamini and Hochberg (1995)



Estimate the FDR

Rank the p-values pr1 ≤ pr2 ≤ …≤ prm.

The following adjusted p-values πri control the FDR 
(when the unadjusted p-values pi are independently
distributed):

πri= mink∈ {i…m} { mprk/k }.



• Select desired limit q on FDR
• Order p-values, p(1) ≤ p(2) ≤ ... ≤ p(m)
• Let r be largest i such that

• Reject all hypotheses 
corresponding to
p(1), ... , p(r).

p(i) ≤ i/m • q

p(i)

i/m
iq/m

p-
va

lu
e

0 1

0
1

JRSS-B (1995)

This keeps the FDR ≤ q 
under independence.



BRCA1 versus BRCA2-mutation positive 
tumours (Hedenfalk et al., 2001)

BRCA1 (7) versus BRCA2-mutation  (8) positive tumours,  
p=3226 genes

P=.001 gave     51 genes differentially expressed

P=0.0001 gave  9-11 genes

Using q<0.05, gives 160 genes taken to be significant.

It means that approx. 8 of these 160 genes are expected to be 
false positives.





Golub et al (1999) experiments
Goal. To identify genes which are differentially 

expressed in acute lymphoblastic leukemia (ALL) 
tumours  in comparison with acute myeloid leukemia
(AML) tumours.

• 38 tumour samples:  27 ALL, 11 AML.
• Data from Affymetrix chips, some pre-processing.
• Originally 6,817 genes; 3,051 after reduction.

Data therefore a 3,051 × 38 array of expression values.

Golub et al. (1999)  Molecular classification of cancer.  Science 286: 531-537



Golub et al (1999)
The empirical distribution of 
the t-test statistic, that 
compares the sample types
AML and ALL. A comparison 
with the theoretical null 
distribution, Student's t-
distribution, hints that there 
are too many extreme values 
to be accounted for by pure 
chance.





Bonferroni others



FDR





Identification of Genes 
Associated with Survival

• Data: survival yi and gene expression xij for 
individuals i = 1, …, n and genes j = 1, …, m

• Fit Cox model for each gene singly:

h(t) = h0(t) exp(βjxij)

• For any gene j = 1, …, m, can test Hj: βj = 0

• Complete null H0
COM: βj = 0 for all j = 1, …, m

• The Hj are tested on the basis of the Wald statistics tj
and their associated p-values pj



Datasets
• Lymphoma (Alizadeh et al.)

40 individuals, 4026 genes

• Melanoma (Bittner et al.)
15 individuals, 3613 genes

• Both available at 
http://lpgprot101.nci.nih.gov:8080/GEAW

Bittner et al. (2000)  Molecular classification of cutaneous malignant melanoma
by gene expression profiling.  Nature 406: 536-540
Alizadeh et al. (2000)  Distinct types of diffuse large B-cell lymphoma 
identified by gene expression profiling.  Nature 403: 503-511

http://lpgprot101.nci.nih.gov:8080/GEAW


Results:  Lymphoma



Results:  Melanoma



Other Proposals from the Microarray Literature

• ‘Neighborhood Analysis’, Golub et al.
– In general, gives only weak control of FWER

• ‘Significance Analysis of Microarrays
(SAM)’ (2 versions)
– Efron et al. (2000): weak control of PFER
– Tusher et al. (2001): strong control of PFER

• SAM also estimates ‘FDR’, but this ‘FDR’
is defined as E(V|H0

COM)/R, not E(V/R)



Controversies

• Whether multiple testing methods 
(adjustments) should be applied at all

• Which tests should be included in the 
family (e.g. all tests performed within a 
single experiment; define ‘experiment’)



• It is plausible that all nulls may be true
• A serious claim will be made whenever any 

p < .05 is found
• Much data manipulation may be performed 

to find a ‘significant’ result
• The analysis is planned to be exploratory

but wish to claim ‘sig’ results are real
• Alternatives

– Bayesian approach

– Meta-analysis



Some references

• Benjamini and Hochberg (1995)  Controlling the false discovery rate:  
a practical and powerful approach to multiple testing.  JRSSB 57: 289-
200

• Benjamini and Yuketieli (2001) The control of false discovery rate in 
multiple hypothesis testing under dependency.  Annals of Statistics

• Hochberg (1988)  A sharper Bonferroni procedure for multiple tests of 
significance.  Biometrika 75: 800-802

• Holm (1979)  A simple sequentially rejective multiple testing 
procedure.  Scand. J Statistics 6: 65-70

• Ihaka and Gentleman (1996)  R: A language for data analysis and 
graphics.  J Comp Graph Stats 5: 299-314

• Tusher et al. (2001)  Significance analysis of microarrays applied to 
transcriptional responses to ionizing radiation.  PNAS 98: 5116 -5121

• Westfall and Young (1993)  Resampling-based multiple testing:  
Examples and methods for p-value adjustment.  New York:  Wiley 

• Yuketieli and Benjamini (1999)  Resampling based false discovery 
rate controlling multiple test procedures for correlated test statistics.  J 
Stat Plan Inf 82: 171-196
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Short vertical bars are estimated counts of non-null genes





Prob( H0 is true) = π0

P(data | H0) π0

Prob( H0 is true | data) = 
P(data)

P(data) = π0 P(data | H0) + (1- π0 ) P(data| H1) 

GIVEN

Bayesian testing
Assume a prior probability on each null hypothesis

EMPIRICAL



Prob( H0 is true) = π0

π0 P(data | H0)
Prob( H0 is true | data) = 

P(data)

Test statistics  z = (z1, ..., zi, ... zm)
Hypothesis: H0i vs. H1i , i = 1, . . . ,m.

Local false discovery rate:

If we decide to reject null hypothesis H0i based on the
test statistics zi , then fdr (zi) is probability that we make 
the wrong decision.

PROBABILITY





Also estimated from data.



Short vertical bars are estimated counts of non-null genes





How to compute the local FDR?



How to compute the green bars? (estimated counts of non-null genes)



Golub et al (1999)



Genes, order with increasing un-adjusted p-value

The lists based on un-adjusted p-values and local FDR can be very different,
while a list based on FDR-adjusted p-values would not be re-ordered.



APO data!



The covariate-modulated false discovery rate 
• takes advantage of prior information on the probability of each null 
hypothesis being true 

• based on external additional data, 
• to produce a more precise list of selected genes.



Additional prior information: 

Assume that for each null hypothesis H0i there is a corresponding covariate Xi
which influences the probability of H0i being true.

Null hypotheses with different corresponding values of xi will have different
probabilities of being true. 



Covariate modulated false discovery rate

Distribution of the test statistics zi :
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p-value model
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We can write the model in terms of p-values instead of Z-test scores:

corresponds to



Covariate-modulated FDR



?),|( and )( model  toHow
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Diaconis and Ylvisaker (1985) show that any distribution on [0, 1] can be 
modelled as mixture of beta distributions. 

Allison et al (2002) investigate this further and apply it to estimating the density 
f of a sample of p-values. 

In their experience with several sets of data, the simplest possible model, 
which is a mixture of a U[0, 1] corresponding to the true null hypotheses and 
one single beta component corresponding to the false null hypotheses, seems 
always to be sufficient.

Hence we use

))(,)(BETA( ))(1( ,1] UNIFORM[0)()|( 00 iiiiii xxxxxpf θξππ −+=

(formal checking of the fit of the alternative model can be done)
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Next we bin the p-values into B sets: B1, B2,..., BB for increasing xi.

In each bin we assume the dependence on xi to be constant.

We drop the dependence on xi within each bin but allow for bin
specific parameters θj and ξj.
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HERITABILITY 

Use family data, to study the tendency for the expression of each gene (seen as the
phenotype) to be attributable to genetic factors.

Compute for each gene its heritability, the proportion of variation in a trait that is
attributable to genetic factors, here defined as the ratio between the genetic variance
and the total phenotypic variance in a classical simple additive model. 



heritability x

A reasonable parametric form

could be used instead than binning. 



Data

22317 pairs of z-scores and 
heritabilities

(test for linking certain QTL markers
to expressions – here only
cis regulation)

If we use the parametric model
of π0 (x), we obtain estimates

π0 (0) = 0.83
π0 (1) = 0.01.







Different ranks between 
the Efron based list and 
the cmfdr based list.
for the common (red)
Genes.



CGH and Expressions

.Jonathan R. Pollack, Therese Sorlie, Charles M. Perou, Christian A. Rees,
Stefanie S. Jerey, Per E. Lonning, Robert Tibshirani, David Botstein,
Anne-Lise Borresen-Dale, and Patrick O. Brown. 
Microarray analysis reveals a major direct role of DNA copy number alteration 
in the transcriptional program of human breast tumors.
PNAS, 99(20):1296312968, 2002.

In this study, measurements of DNA copy number and mRNA expressions 
(relative to a single reference sample) on 6095 genes were done for 4 cell 
lines and 37 breast tumors. 

“A strong influence of DNA copy number on gene expression” (p. 12965) was 
observed



Testing for differentially expressed genes between the two types.
Simple t-test on normalised expression data.

External covariate:  DNA copy number available for each gene, for each 
sample.

• When the mean copy number for a gene is very different in LUMINAL  and 
BASAL, then we can expect a larger probability that the gene expression will 
differ between LUMINAL and BASAL.

• But expressions can differ also when the copy numbers do not: however, 
for this to be a real effect, the difference in expression must be “really big”, 
with respect to normal variability. 

So, for a gene i, the natural covariate xi is simply the difference of the 
average copy number in the LUMINAL samples minus the average copy 
number in the BASAL samples. 



cmfdr = 5%

76 genes sign. with Efron and cmfdr

65 genes cmfdr sign. but not Efron.

5 genes Efron sign. but not cmfdr.
(cluster around x=0, z=-4). 

Copy number difference

t statistics

No difference Large difference
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Themes from the Literature



Finding errors in the papers of others…



Dave et al. 

"Prediction of survival in follicular lymphoma based on molecular features of 
tumor infiltrating cells".

NEJM Nov. 18, 2004 vol 351:2159-2169,

I think it is useful to determine the degree to which an analysis is fragile. 
Even if an analysis produces small p-values, a scientist should be concerned 
if small but reasonable changes in the analysis strategy cause large changes 
in the results. 

With microarray analyses, there are many choices that one has to make, and one 
hopes that the results are not too sensitive to these choices. 



Dave et al. derive a model for predicting patient survival from gene expression data 
using two "immune response" clusters, IR1 (good prognosis) and IR2 (poor prognosis). 
A Cox model using expression averages from the IR1 and IR2 clusters was constructed,
and this model had a highly significant p-value (0.003 or less) in an independent test set.

RE-ANALYSIS (Tibshirani et al.)

When their equal-sized training and test sets are swapped, and their model-building 
procedure is re-applied, their finding disappears and virtually nothing is significant 
in the test set. 

Also, when a small change is made to their model-building recipe (changing the 
allowable cluster size range from [25,50] to [30,60]) with either the original or swapped 
datasets, again, their finding disappears and very little of significance emerges. 

This and other analyses suggest that their result occurred by chance and is not robust 
or reproducible. 

Other analyses suggest that there is little or no correlation between gene expression 
and patient survival in this dataset. 



The steps in the authors' modelling procedure were: 

0. Divide the data randomly into training and test sets of approximately equal numbers 
of patients. Apply the following recipe [steps 1--5] to the training set. 

1. Choose all genes with univariate Cox score > 1.5 in absolute value. This reduced 
the number of genes from roughly 49,000 to roughly 3,200, with about a 50-50 
split between good prognosis genes (negative scores) and poor prognosis genes 
(positive scores).

2. Do separate hierarchial clusterings of the good and poor prognosis genes.

3. Find all clusters in the dendrograms (clustering trees) containing between 25 and 
50 genes, with internal correlation at least 0.5. Represent each cluster by the 
average expression of all genes in the cluster-- a "supergene". (ca. 200)

4. Try every pair of supergenes as predictors in Cox models for predicting survival. 

5. Choose the most significant pair from this process.
The authors call the resulting pair of clusters IR1 (good prognosis) and 
IR2 (poor prognosis). 

6. Finally use the model (IR1, IR2) in a Cox model to predict survival in the test set. 



Training and test p-values for all cluster pairs (8930). 

Each point represents the training and test p-values from a Cox model containing 
two clusters from the set of all clusters that passed the filtering in the first part of the 
analysis. All possible two-cluster models are represented in the plot. 

The (IR1, IR2) cluster model corresponds to the island of points in the bottom left. 
All of these pairs use the IR2 cluster, and variations on the IR1 cluster. 
The (IR1, IR2) model has the smallest training set p-value-



But we also note that the total number of points (cluster pairs) with p-values less 
than 0.05 (239) is far fewer than we'd expect to see by chance (735), 
even if there was no correlation between gene expression and survival. 
This suggests that there may be no overall significance in this dataset. 



Training and test p-values for all cluster pairs, with training and test sets swapped. 

The original training and test sets were of approximately equal size, and were chosen 
at random. Hence it seems reasonable to swap them, train on the original test set 
and test on the original training set. 

We see that the authors' finding does not appear, even approximately. 

Notice also that only 5 pairs out of 8930 have test set p-values less than 0.05. 

Even if there was no correlation between gene expression and survival, we'd expect 
8930*.05= 447 significant pairs. 



Training and test p-values for all cluster pairs (with original training and test datasets), 
using a cluster size range of [30,60] genes instead of [25,50].

In choosing this range, I have intentionally ruled out the strong IR2 cluster, which has 
27 genes. But one would expect that if the authors' finding was robust, we would find 
some other cluster with significant overlap with the IR2 cluster. But the authors' finding 
does not appear, even approximately. 

And there are only 85 pairs out of 11628 that are significant in the test set at the 
0.05 level, while we we would expect 11628*.05=581 pairs just by chance. 



Authors’ reply:

They randomly selected new equal-sized training and test sets from the data, 
and reapplied their original model (IR1-IR2) to each new half-set. 
They found that every resulting p-value was less than 0.011, with a median of 0.001.

This is not surprising and tells us nothing.
The original model was highly significant (p < 10e-8) on the original training set, 
simply as a result of the fitting process. 
And we already know that it is significant on the original test set (p=.003). 
Therefore it was very significant on the whole data and there it must be significant 
on any half of the data that we choose. 

To learn about the robustness or fragility of their model, one must go through 
the entire model building process from scratch. 



Sjoblom, T., Jones, S., Wood, L., Parsons, D., Lin, J., Barber, 
T.,Mandelker, D., Leary, R., Ptak, J., Silliman, N., Szabo, S., 
Buckhaults, P., Farrell, C.,Meeh, P., Markowitz, S., Willis, J., 
Dawson, D., Willson, J., Gazdar, A., Hartigan, J., Wu, L., Liu, C., 
Parmigiani, G., Park, B., Bachman, K., Papadopoulos, N., 
Vogelstein, B., Kinzler, K., and Velculescu, V. 

The consensus coding sequence of human breast and 
colorectal cancers.

Science, 2006, pages 268–274.







Identify genes in tumors that have an increased mutation rate. 

[Sjoblom et al., 2006] sequenced 13,023 CCDS genes in breast and colorectal 
cancer tumors. CCDS genes are protein encoding genes and represent the most 
highly curated gene set currently available. The data collection phase consisted of 
two main parts in which genes that were deemed not to have an increased mutation 
rate were eliminated. 

These two parts were:

Discovery screen:

All genes were sequenced in 11 breast and 11 colorectal cancer tumors.

Initially 816,986 mutations were identified. In order to find true somatic mutations 
(i.e.present in the tumor but not present in the germline of the patient), a complex 
set of filtering steps was used and all but 1,307, mutations in 1,149 genes were 
discarded.

The next step of the data collection was only performed on those genes that 
contained at least one of these mutations.



Validation screen: 

Genes with mutations in the Discovery screen were sequenced in additional 
24 breast and 24 colorectal cancer tumors. 

Through a similar system as before,133,693 initially identified mutations 
were filtered down to 365 in 236 genes. 

Only genes with at least one mutation in the Discovery as well as the 
Validation screen were used in the subsequent statistical data analysis. 
These genes were called ”validated”.



Among the validated genes, those that have a significantly increased mutation 
rate have to be identified. 

Sjoblom et al proposed to use the Benjamini-Hochberg procedure to deal with 
multiple hypothesis testing and control the False Discovery Rate (FDR). In order 
to do this, they defined the CaMP score. A validated gene is determined to be 
significant at an FDR level of 0.1 if its CaMP score is > 1. 

CaMP is roughly the probability of exactly having the observed number of 
mutations under the background mutation rate.

Using this score, 122 genes in breast and 69 genes in colon cancer were 
identified as significant.

However, they made an error! 

When this error is corrected only 2 significant genes in breast and 28 genes in 
colorectal cancer are discovered.











survival

• A gene has an indirect effect on survival if its 
expression influences survival through one or 
more other prognostic genes present in the data.

• A gene has a direct effect on survival if its 
expression influences survival but no gene is 
found in the data that mediates this effect. 





DAG
• The edges are interactions between the 
genes. 
• There is an edge from Xj to Xh, if the 
expression of gene j influences the 
expression of gene h.
• The          are called path coefficients.
• Regression of all parents on each child 

d(individuals alive at time t)

Aalen’s additive model



• Direct effect on survival at time t  for gene 1:

• Each            is an ordinary least squares 
regression coefficient at time t
• Each         is an additive hazard regression 
coefficient at time t. 

• Indirect effect on survival at time t  for gene 1
mediated through gene 2:

• Total indirect effect on survival at time t  
for gene 1: 









(All regressions are repeated at every time point an event happens!)



HUNTING FOR INDIRECT EFFECTS

1. Find the genes that are mostly associated with survival (top 1000) 
(for example: univariate )

2. Determine known pathways of these 1000 genes and their nearest 
neighbours.

Many rather small pathways are selected in this way.

3. We drop parts of these pathways, where it is unlikely to find indirect effects:
Regress each pair of genes in the pathways against survival. 
We keep interactions where both genes have significant effect on survival.

4. We run dynamic path analysis on each pathway and all its subgraphs.













Summing up

• We detect and quantify (direct and) indirect significant effects on 
survival of genes interacting in pathways, using dynamic path 
analysis. 

• We detect indirect effects through several target genes of 
transcription factors like PPAR proteins, E2F1, and MYC in cancer 
microarray data. 

• This points to specific transcription factor - target interactions 
that play a significant role in the development of aggressive tumor
phenotypes. 

• Some indirect effects act opposite to the corresponding direct
effect on survival.







Comparison of 2 sets of samples from different phenotypes (eg. case/control)
Which genes show differential expressions?

• How do we do this?

One-gene-at-the-time analysis: test statistics score (t) – p-values –
multiple comparisons adjustment (not based on
estimated dependency)

• Do we sometimes use  many genes simultaneously?

Yes! – Multiple testing (but not explicitly) 
– Classification
– Find set of differentially expressed genes for prediction. 



Example: (Dettling & Bühlmann, JMA 2004) 

Find groups of genes which act together and whose collective expression is 
strongly associated with an outcome of interest. 

Pelora, an algorithm based on penalized logistic regression analysis, 
that combines gene selection, gene grouping and sample classification in a 
Supervised way. “We show that Pelora identifies gene groups whose 
expression centroids have very good predictive potential”

Typical result:
“If the centroid of genes A, B and C is high, and the centroid of genes D, E, F 
and G is low, this is indicative of cancer subtype A’’. Such gene groups and 
their centroids characteristics can be understood as molecular signatures.

Curse of dimensionality: how many pairs/groups of genes can we investigate?

The genes in a group do not need to interact biologically, but have good
predictive properties.



Sample cases in blue, controls in red.

If the sum of the expressions of two
genes exceeds 3 units, we find only
the blue-triangle phenotype. 

A biological mechanism leading to this 
phenomenon may occur when the two 
genes are substitutes in a molecular 
process that is closely linked to the phenotype. 
('substitution case‘). 

Neither of the two genes shows a strong 
association with the phenotype in the univariate
marginal distribution, and thus both would not
appear in a gene list produced by univariate tests. 



Biologically, this example could reflect an 'on/off situation'.
If both genes are off (expressions < 1.5), 
or both genes are on (expressions > 1.5), we observe 
the red-circle phenotype. 

In contrast, if only one of the genes is turned on, 
the blue-triangle phenotype is predominant. 



Here the marginal expressions of gene 1 and gene 2 show the difference
between the two phenotypes. These genes would be in a list of diff. expressed
genes produced by univariate tests.

For these two genes we do not know if they are co-regulated or if they are
sitting on two different pathways.  



Define joint differential expression as good phenotype discrimination 
by the joint distribution, but not by the univariate marginal distributions of two genes. 
From a functional genomics perspective, such pairs could represent interesting 
novel biological interactions, as for example genes that are in the same pathway. 

These two genes seem to really interact.



How to find such gene pairs?

Solution:

Plot and test all pairs of genes.

Or compare phenotype prediction based on each pair of gene (a) on its own
and (b) in pair together to find those pairs which help in prediction.

Curse of dimensionality:  p genes, p(p-1)/2 gene pairs, usually in the millions. 

Prohibitive computational burden. 



Dettling Gabrielson Parmigiani
CorScor – correlation scoring. 

Data:
n samples and p genes, stored in an (n × p) matrix denoted by (xig). 
Phenotype information y is binary.

Application to:

Colon cancer by Alon et al. Affymetrix Hum6000 arrays and contains the expressions
values of the 2,000 genes in 62 colon tissues, 40 of which were tumors and 
22 of which were normal. 

Breast cancer dataset from Hedenfalk et al.
cDNA microarrays, monitoring 2,654 genes across 22 breast cancer samples, 
7 of which were found to carry germline BRCA1 mutations. 



Take genes g and g‘.

Determine three measures of pairwise dependence among their expression vectors
(x.g) and (x.g’). 

ρ(g,g') using all samples, cases and controls
ρ0(g,g') using only samples in class 0 (controls)
ρ1(g,g') using only samples in class 1 (cases)

Here using (Pearson's and Spearman's) correlations, but the general idea can be 
extended straightforwardly to any easily computed measure of pairwise association 
among gene expression levels. 

To find gene pairs that jointly discriminate the 2 phenotypes according to the 
substitution case use the scoring function

S(ρ,ρ0,ρ1) = | ρ0 + ρ1 - αρ | (1) 

using the Pearson correlation coefficient as dependence measure.
(1) is done on (p times p) correlation matrices.

The higher the score, the more the 2 genes are dependent in each
of the two phenotype classes, and the less dependent they are when classes are 
merged. 



S(ρ,ρ0,ρ1) = | ρ0 + ρ1 - αρ | 

High correlations within each phenotype arise if the data points within each such class 
are aligned along a straight line. So we need data sitting on two lines.

Good joint differential expression requires such tight clustering and close-to-parallel line 
alignment.

Hence, high conditional correlations with concordant sign, and also a shift between the 
lines, are necessary. 

The bigger this shift, and thus the clearer the joint separation, the lower the unconditional 
correlation ρ gets. Hence, we diminish the sum by αρ. 

α governs the balance between separation and parallel alignment.
Empirically good results with α� [1,2], and use α = 1.5 throughout the paper. 

http://genomebiology.com/2005/6/10/R88#B1
http://genomebiology.com/2005/6/10/R88#B2


Three highest-scoring gene pairs according to the scoring function (1). 
As expected, the class-conditional correlations ρ0 and ρ1 tend to be high in 
absolute value and concordant in their signs, whereas the overall 
correlation is low, and sometimes even has a discordant sign.



Some of the gene pairs are correlated in one group but not in the other. 
This loss of coregulation can be a biologically relevant feature. 





Heat map analysis:

Colon data : the most prominent feature is a group of genes (39 to 45 of the matrix). 
Genes GSN, ACTN1, SPARCL1, ITGA7, TPM1, and COL6A2.

(GSN, ACTN1, and SPARCL1) share a common annotation in the Kyoto 
Encyclopedia of Genes and Genomes pathway database (KEGG). 
They are all involved in the 'regulation of actin cytoskeleton'. 

ITGA7, TPM1, and COL6A2 lack pathway annotation in KEGG.
Gene Ontology: TPM1 has the GO terms 'actin binding' and 'cytoskeleton'. 
SPARCL1 is involved in 'calcium ion binding', a term it shares with GSN and ACTN1.

Here we see how now the authors try to go beyond pairs, and look to groups.

CorScor, compared with established clustering techniques based on the expression
values of single genes, is able to capture genes without strong marginal effects. 
The genes involved in detected pairs do not show pronounced fold changes across
the phenotypes, but nevertheless seem to be key in molecular processes closely
linked to the phenotype. 



On-off gene pairs:  S(ρ,ρ0,ρ1) = | ρ1 - ρ0 | (2)



Permutation analysis: how many gene pairs achieve promising score values by 
chance alone?

Author generated 100 noise gene-expression datasets by randomly permuting 
the phenotype labels. They then run CorScor on each of these 100 false 
datasets, to obtain an estimated null distribution of CorScor values.

Right tail of the null distribution 
to the right of the 95% quantile. 
Vertical lines mark the score 
value of the top 3 gene pairs. 

Plus the empirical false-
discovery rate. 
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