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Overview of talk

�Motivating and defining cGP models 

� cGP models for gene regulatory networks

� Quantitative genetic analysis

– Statistical analysis 

– Functional description 

� Exploring the link systems biology and genetics 

– Simple gene regulatory network models

– Systemic properties: feedback structure, gene regulation function 

� Towards more complex cGP models

– Preliminary analysis of two cGP models from public repositories 



The genotype-phenotype (GP) map  – two different views

Quantitative genetics:

- d=0 : additive gene action

- |d|<a : partial dominance

- |d|=a : complete dom.

- |d|>a : overdominance

• mathematical GP map

• useful statistical machinery

– production biology, medicine

– QTL-methods

Regulatory biology:

- downstream gene (A) 

- feedback regulation (B)

- activation or inhibition

• requires molecular insights

• biological GP map

• complex connection with 
classical gene action
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Causally cohesive genotype-phenotype (cGP) models

A mathematical model M of a biological system is a cGP model if:

� Model elements (variables or parameters) are associated with genes

� Genotypic variation is represented by variation in a set of parameters

� It describes how phenotypes arise from lower level processes in a causally 

cohesive way

Defines a GP map TM : G → P from a set G of genotype indexes to a set P 

of real-valued phenotypes.



Consider a simple regulatory system of two genes:

Gene 1 Gene 2

Gene 1 is constitutively expressed and activates production of gene 2.

How to build a cGP model – 1: Biological system

Core promotor (binding site for polymerase)

Regulatory promotor element 

Transcribed region (coding and noncoding)



How to build a cGP model – 2: Mathematical model

�x1 and x2 denote expression levels of gene 1 and 2

� Time rate of change of xi determined by two processes: 

production and decay

– α :maximal production rate

– H : gene regulation function (GRF)

– θ2: threshold, p2: steepness

– γ : relative decay rate
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Mutations in core promotor (or general regulatory elements) can change the 

rate of initiation of transcription -> maximal production rates (αααα)

Mutations in transcribed region (introns and synonymous mutations) can 

change mRNA stability or RNA prosessing rates -> decay rates (γγγγ)

Mutations in specific regulatory elements can change the shape of the gene 

regulation function -> θ and p

Building a cGP model – 3: Representing genetic variation
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Rosenfeld et al (2005) measured the shape of the GRF of the lambda promoter 

PR for both a wild-type and a mutant (point mutation in OR2)

� The Hill function describes the shape                           

of the GRF very well

� A point mutation changes both the                               

steepness (p) and the threshold () 

Empirical evidence for genetic variation changing the shape of 
a gene regulation function

Figures from Rosenfeld et al, Science (2005) , doi: 10.1126/science.1106914



How to build a cGP model – 4: Define phenotypes

� The solution of the differential equations describes the gene 

expression level as a funtion of time

� Any characteristic aspect (qualitative and quantitative) of the 

solution can be used as a phenotype

� The steady state level is a simple and relevant phenotype
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Causally cohesive genotype-phenotype (cGP) models

A mathematical model M of a biological system is a cGP model if:

� Model elements (variables or parameters) are associated with genes

� Genotypic variation is represented by variation in a set of parameters

� It describes how phenotypes arise from lower level processes in a causally 

cohesive way

Defines a GP map TM : G → P from a set G of genotype indexes to a set P 

of real-valued phenotypes.
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• Production rates

• Decay rates

• Shape of gene 

regulation function

P

• Steady state

expression levels



cGP models – what can we do with them

� Explore the link between regulatory principles and 

genetic descriptors

– feedback structure,                                             

dose-response relationships

– dominance, epistasis,                                                              

genetic variance components

� Gene expression phenotypes 

– expression levels are complex                                   

genetic traits

– networks built up by smaller motifs

– 35 years of modelling experience 

Lee et al. (2002), Science



A simulation framework for population studies

� Linkage map : G → G creates realistic genotypic variation 

– linkage groups (chromosomes) , linkage disequilibrium (haplotypes)

� cGPmodel : G → P associates phenotypes with emergent properties of system



Simulated datasets - F2 populations 
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Quantitative genetic analysis

� F2 design variables for individual j at gene i 

� Full genetic model N loci:

� Orthogonal regressors in F2 populations

– Straightforward to go from regressors to variance components

– Estimated effects are the same in reduced and full model

– R package (noia) used for the analysis
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Quantitative genetic analysis – continued

� Variance components:

� Use of variance components: 

– Heritability 

– Breeding 

– QTL mapping

– VI statistical epistasis/interaction
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Functional/physiological description of genetic architecture
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� Functional/physiological vocabulary exists for 1 and 2 loci

– Additivity, dominance, overdominance, epistasis, sign epistasis, magnitude 

epistasis

� Based only on the genotype-phenotype map, not on allele frequencies



Connection between feedback and epistasis

� Feedback loops are ubiquitious in all biological systems (gene 

regulation, metabolism, signalling) 

� How do system level interactions amongs genes map into 

statistical interactions between the same genes?



Feedback study: Simulations

� 3 classes of networks: no, negative and positive feedback

� Simulated 1000 F2-populations with heritable variation in maximal 

production rates and gene regulation functions



Positive feedback gives more epistatic variance

� Large span in the statistical genetic architecture

� Additive and dominance variance dominates

� Positive feedback (blue) gives more epistasic variance



Positive feedback give more types of epistasis

� All motifs give additive-by-additive interactions 

� Positive feedback gives richer set of two-way interactions



Following up on the feedback study

� How can highly non-linear gene regulatory networks produce 

mainly additive genetic variance?

– Focus on the shape of the gene regulation function

� cGP models for more complex biological systems

– Utilize publicly available and curated models (SBML and CellML) for 

cGP-studies of complex biological systems 



Connection between gene regulation function and epistasis

� ODE models with two genes

�Monotone vs. non-monotone gene 

regulation function

� Introduce genetic variation on 

production, decay and shape 

parameters

� Phenotype: steady state    

expression level of gene 2

� Population setup and analysis as in 

feedback study

Gene 1   Gene 2



Nullclines

Gene regulation function and functional epistasis

� Highly epistatic datasets show sign epistasis

� Sign epistasis occurs only for gene 2

� The monotonicity of the gene regulation 

function makes sign epistasis at gene 1 

impossible
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Gene regulation function and functional epistasis

• Datasets with high 

epistatic variance show 

sign epistasis

• Sign epistasis occurs for 

both genes

Nullclines

Gene1  00 

Gene1 11

Gene2  11

Gene2  00

� Datasets with high epistatic variance 

show sign epistasis

� Sign epistasis occurs for both genes due 

to the non-monotonicity of the gene 

regulation function
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cGP model of glycolysis

� cGP model from Teusink et al , 2000

� 13 enzymes identified as genes

� 3 polymorphic loci drawn at random

� Variation in Vmax for polymorphic loci 

– Uniformly +-30% from original value

– Additive gene action at parameter level

� System solved using Pysces

– Stable steady state used as phenotypes

– Dataset without stable s.s. or with s.s. 
concentrations > 20-fold higher than 
default discarded

� 1000 Monte Carlo simulations

� Full noia analysis of each dataset

– 5 phenotypes, 243 genotypes 
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cGP model of mammalian 
circadian clock

� cGP model based on CellML                                       

implementation of model by                                      

Leloup and Goldbeter, 2004

� 3 genes Bmal1, Per, Cry 

� Variation in mRNA decay rates

– Uniformly +-30% from original

– Additive gene action                                            

at parameter level

� System solved in PySundials

– Oscillation period

– Lowest value and time to                                        

peak for 16 state variables

� 1000 repetitions

� Full R\noia analysis of each dataset

Figure from http://model.cellml.org



Statistical epistasis comparison glycolysis vs. circadian clock 

� Glycolysis cGP model has very                                   

little room for epistatic variance

� Circadian clock cGP model                                       

shows much epistatic variance                                   

for all phenotypes

– For all protein complexes bottom concentration level has shows considerably 

more epistasis than time to peak 



Functional epistasis comparison glycolysis vs. circadian clock

� For glycolysis model datasets the statistically most epistatic datasets show 

strong magnitude epistasis, but no overdominance or sign epistasis

� For circadian clock model the statistically most epistatic datasets show 

both overdominance and sign epistasis



Genetic architecture – single locus, additive effects

� Local genetic variation along the pathway, variation in enzyme 
parameters have large effect on substrate concentration

� Distant genetic variation in glucose transporter, hexokinase and
branch-gating enzymes



Genetic architecture – single locus, additive effects

� Some local genetic variation  (Cry and Per on mRNA level), but 
generally all three genes explain variation distant phenotypes

� Bmal1 explains period and time to peak for all complexes, Cry 
and Per explains bottom level for all complexes



Summary

� Challenge: understand variation in organisms as a function of 

genes and environment in a mechanistic sense

� Causally-cohesive genotype-phenotype (cGP) models

� cGP studies of gene regulatory networks produce clear patterns

– Positive feedback increases both the amount and types of statistical 

interactions

– The shape of the gene regulation function has large impact on 

epistasis, monotone GRF reduce the room for sign epistasis and 

statistical interactions

� Similar results observed for models of more complex systems

– Circadian clock with several feedback loops produces much 

statistical epistasis and rich functional epistatic patterns

– Glycolysis model without feedback and with monotonic enzyme 

kinetics shows almost no statistical interaction  


