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Overview of talk

e Motivating and defining cGP models
e cGP models for gene regulatory networks

e Quantitative genetic analysis

— Statistical analysis

— Functional description
e Exploring the link systems biology and genetics

— Simple gene regulatory network models

— Systemic properties: feedback structure, gene regulation function
e Towards more complex cGP models

— Preliminary analysis of two cGP models from public repositories




The genotype-phenotype (GP) map — two different views

Quantitative genetics:

genotype
AA, AA, AA,
-a 0 d a
mean phenotype

- d=0 : additive gene action
d|<a : partial dominance

- |d|=a : complete dom.
d|>a : overdominance

mathematical GP map
useful statistical machinery
— production biology, medicine

— QTL-methods

Regulatory biology:
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- downstream gene (A)
- feedback regulation (B)
- activation or inhibition

e requires molecular insights
 biological GP map

e complex connection with
classical gene action



Causally cohesive genotype-phenotype (cGP) models

A mathematical model M of a biological system is a cGP model if:
e Model elements (variables or parameters) are associated with genes
e Genotypic variation is represented by variation in a set of parameters

e It describes how phenotypes arise from lower level processes in a causally
cohesive way

Defines a GP map 7,,: G — P from a set G of genotype indexes to a set P
of real-valued phenotypes.



How to build a cGP model — 1: Biological system

Consider a simple regulatory system of two genes:

/A 0
H — —ma
Gene 1 Gene 2

|| Core promotor (binding site for polymerase)

- Regulatory promotor element

Transcribed region (coding and noncoding)

Gene 1 is constitutively expressed and activates production of gene 2.




How to build a ¢cGP model — 2: Mathematical model

® x, and x, denote expression levels of gene 1 and 2

e Time rate of change of x;, determined by two processes:
production and decay

dx,

Z =0, =X

dx

d—t2 =a,H(x,0,,p,)—7,x,

— o :maximal production rate
— H : gene regulation function (GRF)
— 0,: threshold, p,: steepness

— v : relative decay rate

Relative production of downstream gene
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Building a cGP model — 3: Representing genetic variation
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\ / 0= 0 || Core promotor
> N[ X » 0
- Regulatory promotor element
Transcribed region

L] Mutations in core promotor (or general regulatory elements) can change the
rate of initiation of transcription -> maximal production rates (Ol)

Mutations in transcribed region (introns and synonymous mutations) can
l'] change mRNA stability or RNA prosessing rates -> decay rates ()

Mutations in specific regulatory elements can change the shape of the gene
l'] regulation function -> 0 and p
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Empirical evidence for genetic variation changing the shape of

a gene regulation function

Rosenfeld et a/(2005) measured the shape of the GRF of the lambda promoter

Pr for both a wild-type and a mutant (point mutation in Oz2)
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Figures from Rosenfeld et al, Science (2005) , doi: 10.1126/science.1106914

e The Hill function describes the shape

of the GRF very well

e A point mutation changes both the
steepness (p) and the threshold ()
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How to build a cGP model — 4: Define phenotypes

e The solution of the differential equations describes the gene
expression level as a funtion of time

e Any characteristic aspect (qualitative and quantitative) of the
solution can be used as a phenotype

e The steady state level is a simple and relevant phenotype

Numerical solution of differential equations
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Causally cohesive genotype-phenotype (cGP) models

A mathematical model M of a biological system is a cGP model if:
e Model elements (variables or parameters) are associated with genes
e Genotypic variation is represented by variation in a set of parameters

e It describes how phenotypes arise from lower level processes in a causally
cohesive way

Defines a GP map 7,,: G — P from a set G of genotype indexes to a set P

of real-valued phenotypes.

. N VV 7 N o0 =

 Production rates » Steady state

- Decay rates dx, expression levels

» Shape of gene i
regulation function




cGP models — what can we do with them

e Explore the link between regulatory principles and

genetic descriptors

— feedback structure,
dose-response relationships

— dominance, epistasis,
genetic variance components

e Gene expression phenotypes

— expression levels are complex
genetic traits

— networks built up by smaller motifs

— 35 years of modelling experience
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A simulation framework for population studies

Population
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e Linkage map : G — G creates realistic genotypic variation
— linkage groups (chromosomes) , linkage disequilibrium (haplotypes)

e cGPmodel : G — P associates phenotypes with emergent properties of system




Simulated datasets - F, populations
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Quantitative genetic analysis

e F, design variables for individual j at gene i

[ 1 for genotype 11 ( -+ for genotype 11
wi. =< 0 for genotype 01, vj. =< < for genotype O1 .
-1 for genotype 00 | -5 for genotype 00

e Full genetic model N loci:

y=Xf+E€,
T
b :[;u a d a, - d, aa, ] )
(3Vx1)
(Nng) =1 Xy Xouy X Niay |
Xowe =W vEow? o VY X, o=[wewt o whevE view? e vy

marg

e Orthogonal regressors in F, populations
— Straightforward to go from regressors to variance components
— Estimated effects are the same in reduced and full model
— R package (noia) used for the analysis



Quantitative genetic analysis — continued

e Variance components:

V, = var(y), (Phenotypic variance)

V. =var(X}), (Genetic variance)

V,=var(X,f,), (Additive variance) V,=var(X,f,), (Dominance variance)
X, =[w w - w'], X, =[v v . vV

B,.=la, a, - a,l B, =ld d, - d,l

V,=V.—-(V,+V,), (Epistatic variance)

— 1,2 ' .
— V statistical epistasis/interaction (R=h"AS,  (Breeder's equation)

e Use of variance components: T T
'H”=—%, (broad sense heritability) |

— Heritability | Ve, |

. I |

~ Breeding h* = L, (narrow sense heritability) |

— QTL mapping Ve :

|

|

IbOP =h’. (midparent-offspring regressmn)




Functional/physiological description of genetic architecture

Additive gene action Gene 1 overdominance — Gene 2 dominance AxA epistasis — sign interaction
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e Functional/physiological vocabulary exists for 1 and 2 loci

— Additivity, dominance, overdominance, epistasis, sign epistasis, magnitude
epistasis

e Based only on the genotype-phenotype map, not on allele frequencies




Connection between feedback and epistasis

GENETICS
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Statistical Epistasis Is a Generic Feature of Gene Regulatory Networks

Arne B. Gjuvsland*'l, Ben |. Hayest Stig W. Omholt* and drjan Carlborg
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e Feedback loops are ubiquitious in all biological systems (gene
regulation, metabolism, signalling)

e How do system level interactions amongs genes map into
statistical interactions between the same genes?




Feedback study: Simulations

No feedback

Negative feedback

Motif 5 Motif 6 Motif 8

Sk s

Motif 10 Motif 11 Motif 12

Positive feedback

e 3 classes of networks: no, negative and positive feedback

e Simulated 1000 F,-populations with heritable variation in maximal
production rates and gene regulation functions




Positive feedback gives more epistatic variance
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e Large span in the statistical genetic architecture
e Additive and dominance variance dominates

e Positive feedback (blue) gives more epistasic variance




Positive feedback give more types of epistasis
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e All motifs give additive-by-additive interactions

e Positive feedback gives richer set of two-way interactions




Following up on the feedback study

e How can highly non-linear gene regulatory networks produce
mainly additive genetic variance?

— Focus on the shape of the gene regulation function

e cGP models for more complex biological systems

— Utilize publicly available and curated models (SBML and CellML) for
cGP-studies of complex biological systems




Connection between gene regulation function and epistasis

____________ o
; \ Vq 7 \\ e OO ©
Gene 1 Gene 2

e ODE models with two genes

e Monotone vs. non-monotone gene
regulation function

e Introduce genetic variation on
production, decay and shape
parameters

e Phenotype: steady state
expression level of gene 2

e Population setup and analysis as in
feedback study

Gene regulation function (GRF)
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Gene regulation function and functional epistasis
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Gene regulation function and functional epistasis
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cGP model of glycolysis

e cGP model from Teusink et a/, 2000
e 13 enzymes identified as genes

e 3 polymorphic loci drawn at random
e Variation in Vmax for polymorphic loci

— Uniformly +-30% from original value
— Additive gene action at parameter level
e System solved using Pysces

— Stable steady state used as phenotypes

— Dataset without stable s.s. or with s.s.
concentrations > 20-fold higher than
default discarded

e 1000 Monte Carlo simulations

e Full noia analysis of each dataset
— 5 phenotypes, 243 genotypes
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cGP model of mammalian
circadian clock

e cGP model based on CellML
implementation of model by
Leloup and Goldbeter, 2004

e 3 genes Bmall, Per, Cry

e Variation in mRNA decay rates

— Uniformly +-30% from original R () ()
— Additive gene action [ R
at parameter level
] ] L e ]
® SYStem solved in Pysund|a|5 Figure from http://model.cellml.org
— Oscillation period C Leowmotesmuinrens

— MP
BN

— Lowest value and time to
peak for 16 state variables
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e 1000 repetitions ’4\‘/ A’A\
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e Full R\noia analysis of each dataset




Statistical epistasis comparison glycolysis vs. circadian clock
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Functional epistasis comparison glycolysis vs. circadian clock
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e For glycolysis model datasets the statistically most epistatic datasets show
strong magnitude epistasis, but no overdominance or sign epistasis

e For circadian clock model the statistically most epistatic datasets show
both overdominance and sign epistasis




Genetic architecture — single locus, additive effects

Glycolysis — Additive variance per locus — 1st quarttile Glycolysis — Additive variance per locus — median
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e Local genetic variation along the pathway, variation in enzyme
parameters have large effect on substrate concentration

e Distant genetic variation in glucose transporter, hexokinase and
branch-gating enzymes




Genetic architecture — single locus, additive effects

Circ.clock — Additive variance per locus — 1st quarttile
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e Some local genetic variation (Cryand Peron mRNA level), but
generally all three genes explain variation distant phenotypes

e Bmall explains period and time to peak for all complexes, Cry
and Per explains bottom level for all complexes



Summary

e Challenge: understand variation in organisms as a function of
genes and environment in @ mechanistic sense

e Causally-cohesive genotype-phenotype (cGP) models

e cGP studies of gene regulatory networks produce clear patterns

— Positive feedback increases both the amount and types of statistical
interactions

— The shape of the gene regulation function has large impact on
epistasis, monotone GRF reduce the room for sign epistasis and
statistical interactions

e Similar results observed for models of more complex systems

— Circadian clock with several feedback loops produces much
statistical epistasis and rich functional epistatic patterns

— Glycolysis model without feedback and with monotonic enzyme
kinetics shows almost no statistical interaction



