Statistics I
 The multiple problems of multiple testing

Outline
Hypothesis testing
Multiple testing
P-value correction

Einar Andreas Rødland

7 September 2009

Outline

Hypothesis testing

Multiple hypothesis testing

P -value correction

Multiple comparisons

Outline

Hypothesis testing
Hypothesis testing
Multiple testing
P-value correction

Multiple hypothesis testing

P -value correction

Multiple comparisons
Multiple
comparisons

The hypothesis test

Example: Is the coin fair, or is either head or tail more likely?

The hypothesis test

Example: Is the coin fair, or is either head or tail more likely?

1. Toss coin N times.

The hypothesis test

Example: Is the coin fair, or is either head or tail more likely?

Outline

Hypothesis testing

1. Toss coin N times.
2. Count the number of heads and tails.

The hypothesis test

Example: Is the coin fair, or is either head or tail more likely?

Outline

Hypothesis testing

1. Toss coin N times.
2. Count the number of heads and tails.
3. Compare to what would be expected from a fair coin.

The hypothesis test

Example: Is the coin fair, or is either head or tail more likely?

1. Toss coin N times.
2. Count the number of heads and tails.
3. Compare to what would be expected from a fair coin.

If the number of heads and tails
is consistent with what could be expected
from a fair coin, the null-hypothesis that the coin is fair should be retained; if not, the null-hypothesis should be rejected.

The hypothesis test

Example:

If we toss a fair coin
20 times, we can compute the probability of getting
x heads $(x=0, \ldots, 20)$.

Outline

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

The hypothesis test

Outline

Example:

If we toss a fair coin
20 times, we can compute the probability of getting
x heads $(x=0, \ldots, 20)$.
The probability of getting at most 5 heads is appr. 2\%; that of 15 more is also appr. 2\%.

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

The hypothesis test

Example:

If we toss a fair coin
20 times, we can compute the probability of getting
x heads $(x=0, \ldots, 20)$.
The probability of getting at most 5 heads is appr. 2\%; that of 15 more is also appr. 2\%.

Hypothesis testing
Multiple testing
P-value correction

Our test: The number of heads should be between 6 and 14 , otherwise we should reject the null-hypothesis (i.e. that the coin is fair).

Type I and Type II errors

Null-hypothesis:

The coin is fair.
Our test: Toss 20 times.
Reject null-hypothesis
if number of heads in not between 6 and 14 .

Outline

Hypothesis testing

Type I and Type II errors

Null-hypothesis:

The coin is fair.
Our test: Toss 20 times. Reject null-hypothesis if number of heads in not between 6 and 14.

Type I error:

False positive. Even

Outline

Hypothesis testing
if the coin is fair, we have
4% likelihood of rejecting the null-hypothesis.

Type I and Type II errors

Null-hypothesis:
 The coin is fair.

Our test: Toss 20 times. Reject null-hypothesis if number of heads in not between 6 and 14.

Type I error:

False positive. Even

Number of heads if the coin is fair, we have 4% likelihood of rejecting the null-hypothesis.

Type II error: False negative. Even if the coin is biased, we may end up retaining the null-hypothesis.

Significance level of a test

Outline

Hypothesis testing
Significance level: The risk of Type I error (false positive) of a given test.

Significance level of a test

Significance level: The risk of Type I error (false positive) of a given test.

It is very common to make tests at the 5% significance level: i.e. so that false positive risk is at most 5%.

Significance level of a test

Significance level: The risk of Type I error (false positive) of a given test.

It is very common to make tests at the 5% significance level: i.e. so that false positive risk is at most 5%.

If the false positive risk is less than the selected significance level, the test is conservative.

Significance level of a test

Significance level: The risk of Type I error (false positive) of a given test.

It is very common to make tests at the 5% significance level: i.e. so that false positive risk is at most 5%.

If the false positive risk is less than the selected significance level, the test is conservative.

If the false positive risk is larger than the selected significance level, the test is wrong!

P-values

Multiple testing
E. A. Rødland

Outline

Our experiment:

We toss the coin
20 times and get 7 heads.

P-values

Our experiment:

We toss the coin
20 times and get 7 heads.

P-value:

The likelihood of getting this outcome or one that deviates even more from what is expected under the null-hypothesis.

Outline

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

P-values

Outline

Our experiment:

We toss the coin
20 times and get 7 heads.

P-value:

The likelihood of getting this outcome or one that deviates even more from what is expected under the null-hypothesis.

Hypothesis testing

P-values

Our experiment:

We toss the coin
20 times and get 7 heads.

P-value:

The likelihood of getting this outcome or one that deviates even more from what is expected under the null-hypothesis.

Outline

Hypothesis testing
Multiple testing
P-value correction

$$
P=\operatorname{Pr}[X \leq 7 \text { or } X \geq 13 \mid \text { null-hyp. }]=0.263 \text { (or } 26.3 \% \text {). }
$$

The deviation from the null-hypothesis is statistically significant at the 5% significance level if $P \leq 0.05$.

P-values

The P-values give a measure of the statistical strength of the evidence against the null-hypothesis.

Outline

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

P-values

The P -values give a measure of the statistical strength of the evidence against the null-hypothesis.
$\mathrm{P}>0.05$ At the 5% significance level, this is considered to be what you could expect if the null-hypothesis is true.
P from 0.01 to 0.05 Considered statistically significant, but not strong evidence.
$P<0.01$ Fairly strong evidence.
$P<0.001$ Strong evidence.

P-values

The P-values give a measure of the statistical strength of the evidence against the null-hypothesis.

Outline
Hypothesis testing
Multiple testing
$\mathrm{P}>0.05$ At the 5% significance level, this is considered to be what you could expect if the null-hypothesis is true.
P from 0.01 to 0.05 Considered statistically significant, but not strong evidence.
$P<0.01$ Fairly strong evidence.
$P<0.001$ Strong evidence.
The P-value does not tell if the deviation from the null-hypothesis is small or large, important or unimportant.

Confidence intervals

What if we don't assume that the coin is fair?
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Confidence intervals

What if we don't assume that the coin is fair?
Hypothesis p : Assume the coin has probability p of head in each toss for some probability $p \in[0,1]$.

Outline
Hypothesis testing
Multiple testing
P-value correction

Confidence intervals

What if we don't assume that the coin is fair?
Hypothesis p : Assume the coin has probability p of head in each toss for some probability $p \in[0,1]$.

Test which values of p may be rejected, and which must be retained as possible values. If tests are at the 5% significance level, the retained values of p form the 95% confidence interval.

Confidence intervals

What if we don't assume that the coin is fair?
Hypothesis p : Assume the coin has probability p of head in each toss for some probability $p \in[0,1]$.

Test which values of p may be rejected, and which must be retained as possible values. If tests are at the 5% significance level, the retained values of p form the 95% confidence interval.

The null-hypothesis that the coin is fair $(p=1 / 2)$ is retained if $p=1 / 2$ is contained in the confidence interval.

For 7 heads in 20 tosses, the 95\% confidence interval for the probability of heads is $[0.15,0.59]$, which contains $1 / 2$.

Outline

E. A. Rødland

Outline
Hypothesis testing

Hypothesis testing

Multiple hypothesis testing

P-value correction

Testing multiple hypotheses at one time

E. A. Rødland

Outline

Hypothesis testing

Example:

Let's test five coins to see if they are fair.

Testing multiple hypotheses at one time

Hypothesis testing

Example:

Let's test five coins to see if they are fair.
Toss each coin 20 times, and use our test.

Multiple
comparisons

Testing multiple hypotheses at one time

Example:

Let's test five coins to see if they are fair.
Toss each coin 20 times, and use our test.
If the coins are fair, for each we have 4\% likelihood of a Type I error.

Testing multiple hypotheses at one time

Example:

Let's test five coins to see if they are fair.
Toss each coin 20 times, and use our test.

If the coins are fair, for each we have 4\% likelihood of a Type I error.

There is appr. 20% risk of making at least one Type I error.

The problem of multiple hypothesis testing

Outline

Hypothesis testing
Multiple testing
P-value correction
When performing several tests, the chance of getting one

The problem of multiple hypothesis testing

When performing several tests, the chance of getting one or more false positives increases.

Multiple testing problem: Need to controll the risk of false positives (Type I error) when performing a large number of tests.

Bad solution to the multiple testing problem

The big DON'T: It is not permissible to perform several tests and only present those that gave the desired outcome.

Outline

Hypothesis testing

Bad solution to the multiple testing problem

The big DON'T: It is not permissible to perform several tests and only present those that gave the desired outcome.

Outline

Hypothesis testing

All-against-all correlations

Multiple testing
E. A. Rødland

Outline

Pearson correlation P -value	sign_ germB	$\begin{aligned} & \text { sign_ } \\ & \text { lymph } \end{aligned}$	$\begin{aligned} & \text { sign_ } \\ & \text { prolif } \end{aligned}$	BHP6	MHC
sign_germB	1.00000	0.16336	-0.05530	-0.08362	0.17837
Germinal center B cell sign.		0.0113	0.3938	0.1967	0.0056
sign_lymph	0.16336	1.00000	-0.31586	-0.02660	0.15082
Lymph node signature	0.0113		<. 0001	0.6818	0.0194
sign_prolif	-0.05530	-0.31586	1.00000	0.14079	-0.13411
Proliferation signature	0.3938	<. 0001		0.0292	0.0379
BHP6	-0.08362	-0.02660	0.14079	1.00000	0.08650
BMP6	0.1967	0.6818	0.0292		0.1817
MHC	0.17837	0.15082	-0.13411	0.08650	1.00000
MHC class II signature	0.0056	0.0194	0.0379	0.1817	

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

All-against-all correlations

Pearson correlation P-value	$\begin{aligned} & \text { sign_ }_{\text {a }} \end{aligned}$	sign_ lymph	$\begin{gathered} \text { sign_ } \\ \text { prolif } \end{gathered}$	BHP6	MHC
sign_germB	1.00000	0.16336	-0.05530	-0.08362	0.17837
Germinal center B cell sign.		0.0113	0.3938	0.1967	0.0056
sign_lymph	0.16336	1.00000	-0.31586	-0.02660	0.15082
Lymph node signature	0.0113		<. 0001	0.6818	0.0194
sign_prolif	-0.05530	-0.31586	1.00000	0.14079	-0.13411
Proliferation signature	0.3938	<. 0001		0.0292	0.0379
BHP6	-0.08362	-0.02660	0.14079	1.00000	0.08650
BMP6	0.1967	0.6818	0.0292		0.1817
MHC	0.17837	0.15082	-0.13411	0.08650	1.00000
MHC class II signature	0.0056	0.0194	0.0379	0.1817	

Computing all pairwise correlations and then presenting only those that are statistically significant, is not acceptable!

Large scale T-testing

E. A. Rødland

Example data: Expression from 100 genes, outcome is survival. Perform T-test for each gene.

Large scale T-testing

E. A. Rødland

Example data: Expression from 100 genes, outcome is survival. Perform T-test for each gene.

Outline

Hypothesis testing
Multiple testing
P-value correction

Multiple

comparisons

Large scale T-testing

Example data: Expression from 100 genes, outcome is survival. Perform T-test for each gene.

Outline
Hypothesis testing
Multiple testing
P-value correction

Rank	Gene	P-value	Rank	Gene	P-value
1	GENE84X	0.00037	13	GENE6X	0.02083
2	GENE73X	0.00431	14	GENE71X	0.02401
3	GENE48X	0.00544	15	GENE49X	0.02463
4	GENE1X	0.00725	16	GENE38X	0.02751
5	GENE81X	0.00769	17	GENE46X	0.02804
6	GENE91X	0.00793	18	GENE75X	0.02892
7	GENE96X	0.00803	19	GENE36X	0.04072
8	GENE22X	0.00907	20	GENE83X	0.04519
9	GENE95X	0.00977	21	GENE8X	0.04608
10	GENE58X	0.01734	22	GENE21X	0.05213
11	GENE77X	0.01911	23	GENE78X	0.06940
12	GENE33X	0.01974	24	GENE16X	0.07046

Multiple

comparisons

Presenting only those with small P -value is inappropriate when we have done 100 tests!

Other cases where multiple testing occurs

Example: A researcher wants to compare incidence of disease between rural and urban populations. He finds a

Hypothesis testing
Multiple testing difference for two out of ten common diseases ($\mathrm{P}=0.02$ and 0.03 resp.).

Other cases where multiple testing occurs

Example: A researcher wants to compare incidence of disease between rural and urban populations. He finds a difference for two out of ten common diseases ($\mathrm{P}=0.02$ and 0.03 resp.).

Example: A researcher wants to check if health depends on social status. Both health and social status can be measured in many different, although similar, ways. He checks all combinations.

Other cases where multiple testing occurs

Example: A researcher wants to compare incidence of disease between rural and urban populations. He finds a difference for two out of ten common diseases ($\mathrm{P}=0.02$ and 0.03 resp.).

Example: A researcher wants to check if health depends on social status. Both health and social status can be measured in many different, although similar, ways. He checks all combinations.

Example: A researcher cannot decide which is more appropriate to use: Pearson correlation or Spearman. He picks the one that gives the lowest P-value.

Outline

E. A. Rødland

Outline
Hypothesis testing

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Multiple
comparisons

False positive rate under multiple tests

Outline

Hypothesis testing
Result: If you perform N tests at a significance level α, then the probability of having at least one false positive is at most $N \times \alpha$.

Multiple testing
P-value correction
Multiple
comparisons

False positive rate under multiple tests

Result: If you perform N tests at a significance level α, then the probability of having at least one false positive is at most $N \times \alpha$.

In many cases, the risk will be less, but this result is true even in the worst of cases.

False positive rate under multiple tests

Result: If you perform N tests at a significance level α, then the probability of having at least one false positive is at most $N \times \alpha$.

In many cases, the risk will be less, but this result is true even in the worst of cases.

It is also correct if some of the null-hypotheses are actually wrong.

False positive rate under multiple tests

Result: If you perform N tests at a significance level α, then the probability of having at least one false positive is at most $N \times \alpha$.

In many cases, the risk will be less, but this result is true even in the worst of cases.

It is also correct if some of the null-hypotheses are actually wrong.

May use this to formulate a multiple test that controls the over-all risk of having a false positive.

Bonferroni's P-value correction

Hypothesis testing

Bonferroni: If you perform N tests at a significance level α / N, then the probability of having at least one false positive is at most α.

Bonferroni's P-value correction

Bonferroni: If you perform N tests at a significance level α / N, then the probability of having at least one false positive is at most α.

Bonferroni P-value: If you run N tests, multiply all the P -values by N to get the Bonferroni corrected P -values.

Bonferroni's P-value correction

Bonferroni: If you perform N tests at a significance level α / N, then the probability of having at least one false positive is at most α.

Bonferroni P-value: If you run N tests, multiply all the P-values by N to get the Bonferroni corrected P -values.

Result: The likelihood of getting a Bonferroni corrected P -value less than α for a true null-hypothesis is at most α.

Bonferroni's P-value correction

Multiple testing
E. A. Rødland

Outline

Hypothesis testing

Pearson correlation / P-value				
sign_germB	-			
Germinal center B cell sign.				
sign_lymph	0.16336	-		
Lymph node signature	0.0113			
sign_prolif	-0.05530	-0.31586	-	
Proliferation signature	0.3938	<. 0001		
BHP6	-0.08362	-0.02660	0.14079	-
BMP6	0.1967	0.6818	0.0292	
MHC	0.17837	0.15082	-0.13411	0.08650
MHC class II signature	0.0056	0.0194	0.0379	0.1817

Multiple testing
P-value correction
Multiple
comparisons

Multiply each P-value by 10 to get the Bonferroni corrected P -value.

Bonferroni's P-value correction

Multiple testing
E. A. Rødland

Outline

Hypothesis testing

Pearson correlation / P-value				
$\begin{aligned} & \text { sign_germB } \\ & \text { Germinal center B cell sign. } \end{aligned}$				
sign_lymph	0.16336	-		
Lymph node signature	0.0113			
sign_prolif	-0.05530	-0.31586	-	
Proliferation signature	0.3938	<.0001		
BHP6	-0.08362	-0.02660	0.14079	-
BMP6	0.1967	0.6818	0.0292	
MHC	0.17837	0.15082	-0.13411	0.08650
MHC class II signature	0.0056	0.0194	0.0379	0.1817

Multiple testing
P-value correction
Multiple
comparisons

Multiply each P-value by 10 to get the Bonferroni corrected P -value.

Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires us to multiply all P-values with 100.

E. A. Rødland

Outline
Hypothesis testing
Multiple testing

Rank	Gene	P-value	Rank	Gene	P-value
1	GENE84X	0.00037	13	GENE6X	0.02083
2	GENE73X	0.00431	14	GENE71X	0.02401
3	GENEE8X	0.00544	15	GENE49X	0.02463
4	GENE1X	0.00725	16	GENE38X	0.02751
5	GENE81X	0.00769	17	GENE46X	0.02804
6	GENE91X	0.00793	18	GENE75X	0.02892
7	GENE96X	0.00803	19	GENE36X	0.04072
8	GENE22X	0.00907	20	GENE83X	0.04519
9	GENE95X	0.00977	21	GENE8X	0.04608
10	GENE58X	0.01734	22	GENE21X	0.05213
11	GENE77X	0.01911	23	GENE78X	0.06940
12	GENE33X	0.01974	24	GENE16X	0.07046

P-value correction
Multiple
comparisons

Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires us to multiply all P-values with 100.

Rank	Gene	P-value	Rank	Gene	P-value
1	GENE84X	0.00037	13	GENE6X	0.02083
2	GENE73X	0.00431	14	GENE71X	0.02401
3	GENE48X	0.00544	15	GENE49X	0.02463
4	GENE1X	0.00725	16	GENE38X	0.02751
5	GENE81X	0.00769	17	GENE46X	0.02804
6	GENE91X	0.00793	18	GENE75X	0.02892
7	GENE96X	0.00803	19	GENE36X	0.04072
8	GENE22X	0.00907	20	GENE83X	0.04519
9	GENE95X	0.00977	21	GENE8X	0.04608
10	GENE58X	0.01734	22	GENE21X	0.05213
11	GENE77X	0.01911	23	GENE78X	0.06940
12	GENE33X	0.01974	24	GENE16X	0.07046

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Only the smallest P -value survives Bonferroni correction.

Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires us to multiply all P-values with 100.

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Only the smallest P-value survives Bonferroni correction.
Most micro arrays now contains more than 40.000 probes: too many to test them one by one and hope that they can survive Bonferroni correction.

Bonferroni's P-value correction

Bonferroni correction is the most common multiple testing correction:

Outline
Hypothesis testing

- It is very simple.

Bonferroni's P-value correction

Bonferroni correction is the most common multiple testing correction:

- It is very simple.
- It is always correct: no model assumptions, no assumption of independence.

Bonferroni's P-value correction

Bonferroni correction is the most common multiple testing correction:

- It is very simple.
- It is always correct: no model assumptions, no assumption of independence.
- Gives one new P-value for each test.

Bonferroni's P-value correction

Bonferroni correction is the most common multiple testing correction:

Hypothesis testing

- It is very simple.
- It is always correct: no model assumptions, no assumption of independence.
- Gives one new P-value for each test.
- Useable even if some hypotheses are false.

Bonferroni's P-value correction

Bonferroni correction is the most common multiple testing correction:

- It is very simple.
- It is always correct: no model assumptions, no assumption of independence.
- Gives one new P-value for each test.
- Useable even if some hypotheses are false.
- If some tests produce false positives even after correction, it will still be reliable on other tests (unless correlated).

Bonferroni's P-value correction

Bonferroni correction is the most common multiple testing correction:

- It is very simple.
- It is always correct: no model assumptions, no assumption of independence.
- Gives one new P-value for each test.
- Useable even if some hypotheses are false.
- If some tests produce false positives even after correction, it will still be reliable on other tests (unless correlated).

However, Bonferroni-correction is often conservative!

Bonferroni's P-value correction

Multiple testing
E. A. Rødland

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Only one P-value would survive Bonferroni correction.

Bonferroni's P-value correction

Pearson correlation / P-value
sign_germB
Germinal center B cell sign.
sign_lymph

0.16336	-		
0.0113			
-0.05530	-0.31586		
0.3938	$<.0001$		
		0.14079	
-0.08362	-0.02660	0.0292	
0.1967	0.6818		
	0.15082	-0.13411	0.08650
0.17837	0.0194	0.0379	0.1817

Only one P-value would survive Bonferroni correction.
However, getting $\mathrm{P}<0.05$ for 5 of the remaining 9 correlations seems unlikely to happen by chance.

Bonferroni's P-value correction

Pearson correlation / P-value
sign_germB
Germinal center B cell sign.

sign_lymph	0.16336	-		
Lymph node signature	0.0113			
sign_prolif	-0.05530	-0.31586		
Proliferation signature	0.3938	$<.0001$		
BHP6	-0.08362	-0.02660	0.14079	
BMP6	0.1967	0.6818	0.0292	
MHC	0.17837	0.15082	-0.13411	0.08650
MHC class II signature	0.0056	0.0194	0.0379	0.1817

Only one P-value would survive Bonferroni correction.
However, getting $\mathrm{P}<0.05$ for 5 of the remaining 9 correlations seems unlikely to happen by chance.

In this case, Bonferroni correction is very conservative.

Alternative P-value corrections

Exists less conservative methods.

Multiple testing
E. A. Rødland

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Alternative P-value corrections

Exists less conservative methods.

Bonferroni-Holm Like Bonferroni, but correct the k-th smallest P -value with a factor $N+1-k$.

Outline

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Alternative P-value corrections

Exists less conservative methods.

Bonferroni-Holm Like Bonferroni, but correct the k-th
smallest P-value with a factor $N+1-k$.
Simes' procedure If there are $k P$-values less than q, the over-all P-value is at most $q \times N / k$.

Alternative P-value corrections

Exists less conservative methods.

Bonferroni-Holm Like Bonferroni, but correct the k-th smallest P -value with a factor $N+1-k$.
Simes' procedure If there are $k P$-values less than q, the over-all P -value is at most $q \times N / k$.
False discovery rate Relaxes the criteria by allowing some false positives.

Alternative P-value corrections

Exists less conservative methods.

Bonferroni-Holm Like Bonferroni, but correct the k-th smallest P -value with a factor $N+1-k$.
Simes' procedure If there are $k P$-values less than q, the over-all P-value is at most $q \times N / k$.
False discovery rate Relaxes the criteria by allowing some false positives.

Some procedures (e.g. Simes') require caution: test the over-all hypothesis that all the null-hypotheses are true. Need not tell you which of the null-hypotheses are rejected, only that they cannot all be retained.

Over-all tests of multiple hypotheses

Example: We compute all pairwise correlations for 10 variables (that's 45 pairs). The smalles P -values we get are $0.0014,0.0021,0.0025$ and 0.0031 . None of these would survive the Bonferroni correction.

Simes' procedure would give an over-all P-value of $0.0031 \times 45 / 4=0.035$. However, it would be wrong to conclude that all four of these correlations are non-zero at the 5% significance level.

Over-all tests of multiple hypotheses

Example: We compute all pairwise correlations for 10 variables (that's 45 pairs). The smalles P -values we get are $0.0014,0.0021,0.0025$ and 0.0031 . None of these would survive the Bonferroni correction.

Simes' procedure would give an over-all P-value of $0.0031 \times 45 / 4=0.035$. However, it would be wrong to conclude that all four of these correlations are non-zero at the 5% significance level.

Over-all tests are often more powerful than e.g.
Bonferroni, but lead to conclusions that are harder to interpret and explain.

One approach to multiple testing

E. A. Rødland

How to interpret and present P -values in a multiple testing setting:

One approach to multiple testing

How to interpret and present P-values in a multiple testing setting:

P-value survives Bonferroni correction: Corrected
P -value is reliable.

One approach to multiple testing

How to interpret and present P -values in a multiple testing setting:

P-value survives Bonferroni correction: Corrected P -value is reliable.
Over-all test is not statistically significant: No reason to believe there are any statistically significant P -values.

One approach to multiple testing

How to interpret and present P -values in a multiple testing setting:

P-value survives Bonferroni correction: Corrected P -value is reliable.
Over-all test is not statistically significant: No reason to believe there are any statistically significant P-values.
Conflict: If the uncorrected P -value is statistically significant, but Bonferroni corrected is not, proceed with caution! This may indicate a possible, but unreliable, finding.

Another approach to multiple testing

Ideally, one should perform one test only, and decide on the test prior to analysing the data.

Outline

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Another approach to multiple testing

Ideally, one should perform one test only, and decide on the test prior to analysing the data.

In reality, data is scarce, and one wants to performe more analyses, get more results and test more hypotheses.

Another approach to multiple testing

Ideally, one should perform one test only, and decide on the test prior to analysing the data.

In reality, data is scarce, and one wants to performe more analyses, get more results and test more hypotheses.

Hypothesis testing

One compromise is to divide analyses into two parts:

Another approach to multiple testing

Ideally, one should perform one test only, and decide on the test prior to analysing the data.

In reality, data is scarce, and one wants to performe more analyses, get more results and test more hypotheses.

One compromise is to divide analyses into two parts:
Hypothesis testing: As rigorous as can be done! Want reliable conclusions.

Another approach to multiple testing

Ideally, one should perform one test only, and decide on the test prior to analysing the data.

In reality, data is scarce, and one wants to performe more analyses, get more results and test more hypotheses.

Outline
Hypothesis testing
Multiple testing
P-value correction

One compromise is to divide analyses into two parts:
Hypothesis testing: As rigorous as can be done! Want reliable conclusions.
Hypothesis generating: Less rigorous, allowing data mining, multiple testing, etc. Conclusions are not expected to be reliable in themselves, but give good ideas/candidates for further research.

Outline

E. A. Rødland

Outline
Hypothesis testing

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Multiple comparisons

Outline

Hypothesis testing
One special case of multiple testing is pairwise comparisons of groups.

Multiple comparisons

One special case of multiple testing is pairwise comparisons of groups.
Example: A doctor is comparing 6 different treatments to find which reduces blood pressure the most by giving each treatment to 10 different patients.

Multiple comparisons

One special case of multiple testing is pairwise comparisons of groups.

Example: A doctor is comparing 6 different treatments to find which reduces blood pressure the most by giving each treatment to 10 different patients.

Can use ANOVA (Analysis of Variance) to check if there is any variation between the treatments, and T -tests to compare each pair of treatments. There are 15 pairs, so P -values need to correct for multiple testing.

Multiple comparisons

Group	x LSMEAN	95% Confidence	Limits
1	1.864723	1.194959	2.534487
2	0.606615	-0.063149	1.276378
3	2.621182	1.951418	3.290945
4	0.789182	0.119418	1.458946
5	1.196442	0.526678	1.866206
6	3.397056	2.727292	4.066820

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Group	5	60.21737137	12.04347427	10.79	$<.0001$

Multiple
comparisons

ANOVA shows that there is variation between the treatments ($\mathrm{P}<0.0001$), but this does not tell us which treatments differ.

All-against-all comparisons

Multiple testing
E. A. Rødland

Outline

Hypothesis testing

Tukey: Adjustment of P -values for all-against-all T-tests.

Tukey	1	2	3	4	5	6
1		0.0999	0.6014	0.2215	0.7182	0.0236
2	0.0999		0.0011	0.9988	0.8109	$<.0001$
3	0.6014	0.0011		0.0037	0.0429	0.5749
4	0.2215	0.9988	0.0037		0.9538	$<.0001$
5	0.7182	0.8109	0.0429	0.9538		0.0003
6	0.0236	$<.0001$	0.5749	$<.0001$	0.0003	

\left.| Tukey | | | | Mean |
| :---: | :---: | :---: | :---: | :---: |
| | A | | N | gr |
| B | | | 3971 | 10 |$\right) 6$

One-against-all comparisons

Dunnet: Adjustment of P-values for one-against-all T-tests.

Group	x LSMEAN	Pr $>\|t\|$
1	1.86472306	
2	0.60661459	0.0419
3	2.62118151	0.3680
4	0.78918174	0.1028
5	1.19644178	0.4854
6	3.39705568	0.0090

E.g. if group 1 is placebo or the standard treatment against which the others should be compared.

Some links

StatSoft textbook Good overview of methods and concepts:
http://statsoft.com/textbook/stathome.html
SAS manuals Thorough with overview of analysis procedures found in SAS:
http://support.sas.com/onlinedoc/913/

Multiple
comparisons

