The multiple problems of multiple testing

Clara-Cecilie Günther
Based on a presentation by Einar Andreas Rødland

24 November 2011

Outline

Hypothesis testing

Multiple hypothesis testing

P -value correction

Multiple comparisons

Outline

C.C. Günther

Outline
Hypothesis testing
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Multiple hypothesis testing

P-value correction

Multiple comparisons

Hypothesis testing

Outline

Hypothesis testing

Define the null hypothesis H_{0} and alternative hypothesis H_{1}.

Perform experiment.
How likely is the outcome given that the null hypothesis is true?

Reject or accept null hypothesis.

The hypothesis test

Example: Is the coin fair, or is either head or tail more likely?
H_{0} : The coin is fair. H_{1} : The coin is not fair.

1. Toss coin N times.
2. Count the number of heads and tails.
3. Compare to what
 would be expected from a fair coin.

If the number of heads and tails is consistent with what could be expected from a fair coin, the null-hypothesis that the coin is fair should be accepted; if not, the null-hypothesis should be rejected.

The hypothesis test

Example:

If we toss a fair coin
20 times, we can compute the probability of getting
x heads $(x=0, \ldots, 20)$.
The probability of getting at most 5 heads is appr. 2\%; that of 15 more is also appr. 2\%.

Number of heads

Outline

Hypothesis testing
Multiple testing
P-value correction

Our test: The number of heads should be between 6 and 14, otherwise we should reject the null-hypothesis (i.e. that the coin is fair).

The hypothesis test

Example:

If we toss a fair coin
20 times, we can compute the probability of getting
x heads $(x=0, \ldots, 20)$.
The probability of getting at most 5 heads is appr. 2\%; that of 15 more is also appr. 2\%.

Number of heads

Outline

Hypothesis testing
Multiple testing
P-value correction

Our test: The number of heads should be between 6 and 14, otherwise we should reject the null-hypothesis (i.e. that the coin is fair).

Type I and type II errors

Outline

Hypothesis testing
Multiple testing
What if our decision is wrong?
There are two types of errors to make:

	H_{0} is true	H_{0} is false
Reject H_{0}	False positive Type I error	OK
Accept H_{0}	OK	False negative Type II error

Type I and Type II errors

Null-hypothesis:
 The coin is fair.

Our test: Toss 20 times. Reject null-hypothesis if number of heads is less than 6 or greater than 14 .

Type I error: Rejecting the null hypothesis when

Number of heads it is true. Even if the coin is fair, we have 4% probability of rejecting the null-hypothesis.

Type II error: Not rejecting the null hypothesis when it is not true. Even if the coin is biased, we may end up accepting the null-hypothesis.

Significance level of a test

Significance level: The probability of type I error (false
Outline
Hypothesis testing
Multiple testing
P-value correction positive) of a given test.

It is very common to perform tests at the 5% significance level: i.e. so that the false positive risk is at most 5%.

If the false positive risk is less than the selected significance level, the test is conservative.

If the false positive risk is larger than the selected significance level, the test is wrong!

The power of a test

The probability that a false H_{0} is rejected.
It is 1 minus the probability of a type II error.
A test with high power have a higher probability to draw the correct conclusion to reject the null hypothesis than a test with low power.

If the probability of a type I error decreases, the power also decreases.

How do we know when to reject H_{0} ?

Calculate the p-value and compare with the chosen significance level.

The p-value is the probability of observing what we have observed or something 'more extreme' when H_{0} is true.

Small p-values \Rightarrow Reject H_{0}.
Large p-values \Rightarrow Accept H_{0}.

P-values

Our experiment:

We toss the coin
20 times and get 7 heads.

P-value:

The probability of getting this outcome or one that deviates even more from what is expected under the null-hypothesis.

Outline

Hypothesis testing
Multiple testing
P-value correction

$$
P=\operatorname{Pr}[X \leq 7 \text { or } X \geq 13 \mid \text { null-hyp. }]=0.263 \text { (or } 26.3 \% \text {). }
$$

The deviation from the null-hypothesis is statistically significant at the 5% significance level if $P \leq 0.05$.

P-values

Our experiment:

We toss the coin
20 times and get 7 heads.

P-value:

The probability of getting this outcome or one that deviates even more from what is expected under the null-hypothesis.

Outline

Hypothesis testing
Multiple testing
P-value correction

$$
P=\operatorname{Pr}[X \leq 7 \text { or } X \geq 13 \mid \text { null-hyp. }]=0.263 \text { (or } 26.3 \% \text {). }
$$

The deviation from the null-hypothesis is statistically significant at the 5% significance level if $P \leq 0.05$.

P-values

The P-values give a measure of the statistical strength of the evidence against the null-hypothesis.
$\mathrm{P}>0.05$ At the 5% significance level, this is considered to be what you could expect if the null-hypothesis is true.
P from 0.01 to 0.05 Considered statistically significant, but not strong evidence.
$P<0.01$ Fairly strong evidence.
$P<0.001$ Strong evidence.
The P-value does not tell if the deviation from the null-hypothesis is small or large, important or unimportant.

Confidence intervals

What if we don't assume that the coin is fair?
Assume the coin has probability p of head in each toss for some probability $p \in[0,1]$.

Test which values of p may be rejected, and which must be accepted as possible values. If tests are at the 5% significance level, the accepted values of p form the 95% confidence interval.

The null-hypothesis that the coin is fair $(p=1 / 2)$ is accepted if $p=1 / 2$ is contained in the confidence interval.

For 7 heads in 20 tosses, the 95\% confidence interval for the probability of heads is [0.15,0.59], which contains $1 / 2$.

Outline

C.C. Günther

Hypothesis testing

Multiple hypothesis testing

P-value correction

Testing multiple hypotheses at one time

Outline
Hypothesis testing
Multiple testing

Example:

Let's test five coins to see if they are fair.
Toss each coin 20 times, and use our test.
If the coins are fair, for each we have 4% probability of a type I error.

What is the probability of making at least one type I error?

Testing multiple hypotheses at one time

What is the probability of making at least one type I error?

Outline

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

$$
\begin{aligned}
P(\text { at least one type I error })= & 1-P(\text { no type I errors }) \\
= & 1-P(\text { no type I error coin } 1) . \\
& \ldots \cdot P(\text { no type I error coin } 5) \\
= & 1-(1-0.04)^{5}=0.18
\end{aligned}
$$

The risk of making at least one type I error is 18%.

Example: 10000 genes

H_{0}^{i} : gene i is not differentially expressed, $i=1, \ldots 10000$
Assume: No differentially expressed genes, H_{0}^{i} true for all i.
Significance level $\alpha=0.01$.
Expect $10000 \cdot \alpha=10000 \cdot 0.01=100$ genes to have a p -value smaller than 0.01 by chance.

We expect to find 100 differentially expressed genes when in fact none of them are!

Many tests \rightarrow many false positives \rightarrow not good!

The problem of multiple hypothesis testing

When performing several tests, the chance of getting one or more false positives increases.

Multiple testing problem: Need to control the risk of false positives (type I error) when performing a large number of tests.

Bad solution to the multiple testing problem

The big DON'T: It is not permissible to perform several tests and only present those that gave the desired outcome.

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Bad solution to the multiple testing problem

The big DON'T: It is not permissible to perform several tests and only present those that gave the desired outcome.

Outline

Hypothesis testing

All-against-all correlations

Example data: Large B-cell lymphoma data.
Correlation between gene expression signatures.

Outline

Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Computing all pairwise correlations and then presenting only those that are statistically significant, is not acceptable!

Large scale T-testing

Example data: Expression from 100 genes, outcome is survival. Perform t-test for each gene.

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Rank	Gene	P-value	Rank	Gene	P-value
1	GENE84X	0.00037	13	GENE6X	0.02083
2	GENE73X	0.00431	14	GENE71X	0.02401
3	GENE48X	0.00544	15	GENE49X	0.02463
4	GENE1X	0.00725	16	GENE38X	0.02751
5	GENE81X	0.00769	17	GENE46X	0.02804
6	GENE91X	0.00793	18	GENE75X	0.02892
7	GENE96X	0.00803	19	GENE36X	0.04072
8	GENE22X	0.00907	20	GENE83X	0.04519
9	GENE95X	0.00977	21	GENE8X	0.04608
10	GENE58X	0.01734	22	GENE21X	0.05213
11	GENE77X	0.01911	23	GENE78X	0.06940
12	GENE33X	0.01974	24	GENE16X	0.07046

Presenting only those with small P-value is inappropriate when we have done 100 tests!

Other cases where multiple testing occurs

Example: A researcher wants to compare incidence of disease between rural and urban populations. He finds a difference for two out of ten common diseases ($\mathrm{P}=0.02$ and 0.03 resp.).

Example: A researcher wants to check if health depends on social status. Both health and social status can be measured in many different, although similar, ways. He checks all combinations.

Example: A researcher cannot decide which is more appropriate to use: Pearson correlation or Spearman. He picks the one that gives the lowest P -value.

Outline

C.C. Günther

Outline
Hypothesis testing

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Corrected p-values

Hypothesis testing

The original p-values do not tell the full story.
Instead of using the original p-values for decision making, we should use corrected ones.

False positive rate under multiple tests

Result: If you perform N tests at a significance level α, then the probability of having at least one false positive is at most $N \times \alpha$.

In many cases, the risk will be less, but this result is true even in the worst of cases.

It is also correct if some of the null-hypotheses are actually wrong.

May use this to formulate a multiple test that controls the over-all risk of having a false positive.

Bonferroni's p-value correction

Bonferroni: If you perform N tests at a significance level α / N, then the probability of having at least one false positive is at most α.

Bonferroni p-value: If you run N tests, multiply all the p-values by N to get the Bonferroni corrected p-values.

Result: The probability of getting a Bonferroni corrected p-value less than α for a true null-hypothesis is at most α.

Bonferroni's P-value correction

Multiple testing
C.C. Günther

Outline

Hypothesis testing

| Pearson correlation / P-value | | | | |
| :--- | ---: | :--- | :--- | :--- | :--- |
| sign_germB | | | | |
| Germinal center B cell sign. | | | | |
| | | | | |
| sign_lymph | 0.16336 | - | | |
| Lymph node signature | 0.0113 | | | |
| sign_prolif | -0.05530 | -0.31586 | | |
| Proliferation signature | 0.3938 | $<.0001$ | | |
| | | | | |
| BHP6 | -0.08362 | -0.02660 | 0.14079 | |
| BMP6 | 0.1967 | 0.6818 | 0.0292 | |
| | 0.17837 | 0.15082 | -0.13411 | 0.08650 |
| MHC | 0.0056 | 0.0194 | 0.0379 | 0.1817 |

Multiple testing
P-value correction
Multiple
comparisons

Multiply each p-value by 10 to get the Bonferroni corrected P -value.

Bonferroni's P-value correction

Multiple testing
C.C. Günther

Outline

Hypothesis testing

| Pearson correlation / P-value | | | | |
| :--- | ---: | :--- | :--- | :--- | :--- |
| sign_germB | | | | |
| Germinal center B cell sign. | | | | |
| | | | | |
| sign_lymph | 0.16336 | - | | |
| Lymph node signature | 0.0113 | | | |
| sign_prolif | -0.05530 | -0.31586 | | |
| Proliferation signature | 0.3938 | $<.0001$ | | |
| | | | | |
| BHP6 | -0.08362 | -0.02660 | 0.14079 | |
| BMP6 | 0.1967 | 0.6818 | 0.0292 | |
| | 0.17837 | 0.15082 | -0.13411 | 0.08650 |
| MHC | 0.0056 | 0.0194 | 0.0379 | 0.1817 |

Multiple testing
P-value correction
Multiple
comparisons

Multiply each p-value by 10 to get the Bonferroni corrected P -value.

Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires us to multiply all P-values with 100.

Hypothesis testing
Multiple testing
P-value correction
Multiple

Rank	Gene	P-value	Rank	Gene	P-value
1	GENE84X	0.00037	13	GENE6X	0.02083
2	GENE73X	0.00431	14	GENE71X	0.02401
3	GENE48X	0.00544	15	GENE49X	0.02463
4	GENE1X	0.00725	16	GENE38X	0.02751
5	GENE81X	0.00769	17	GENE46X	0.02804
6	GENE91X	0.00793	18	GENE75X	0.02892
7	GENE96X	0.00803	19	GENE36X	0.04072
8	GENE22X	0.00907	20	GENE83X	0.04519
9	GENE95X	0.00977	21	GENE8X	0.04608
10	GEN58X	0.01734	22	GENE21X	0.05213
11	GENE77X	0.01911	23	GENE78X	0.06940
12	GENE33X	0.01974	24	GENE16X	0.07046

comparisons

Only the smallest P-value survives Bonferroni correction.

Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires us to multiply all P-values with 100.

Hypothesis testing
Multiple testing
P-value correction
Multiple

Rank	Gene	P-value	Rank	Gene	P-value
1	GENE84X	0.00037	13	GENE6X	0.02083
2	GENE73X	0.00431	14	GENE71X	0.02401
3	GENE48X	0.00544	15	GENE49X	0.02463
4	GENE1X	0.00725	16	GENE38X	0.02751
5	GENE81X	0.00769	17	GENE46X	0.02804
6	GENE91X	0.00793	18	GENE75X	0.02892
7	GENE96X	0.00803	19	GENE36X	0.04072
8	GENE22X	0.00907	20	GENE83X	0.04519
9	GENE95X	0.00977	21	GENE8X	0.04608
10	GEN58X	0.01734	22	GENE21X	0.05213
11	GENE77X	0.01911	23	GENE78X	0.06940
12	GENE33X	0.01974	24	GENE16X	0.07046

comparisons

Only the smallest P-value survives Bonferroni correction.

Bonferroni's p-value correction

Bonferroni correction is the most well-known multiple testing correction:

- Very simple.
- Always correct: no model assumptions, no assumption of independence.
- Gives one new p-value for each test.
- Useable even if some hypotheses are false.
- If some tests produce false positives even after correction, it will still be reliable on other tests (unless correlated).

However, Bonferroni-correction is often conservative!

Bonferroni's p-value correction

Pearson correlation / P-value
sign_germB
Germinal center B cell sign.
sign_lymph

0.16336			
0.0113			
-0.05530	-0.31586		
0.3938	$<.0001$		
-0.08362	-0.02660	0.14079	
0.1967	0.6818	0.0292	
0.17837	0.15082	-0.13411	0.08650
0.0056	0.0194	0.0379	0.1817

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Only one p-value would survive Bonferroni correction.
However, getting $\mathrm{P}<0.05$ for 5 of the remaining 9 correlations seems unlikely to happen by chance.

In this case, Bonferroni correction is quite conservative.

Bonferroni's p-value correction

Pearson correlation / P-value
sign_germB
Germinal center B cell sign.

sign_lymph	0.16336	-		
Lymph node signature	0.0113			
sign_prolif	-0.05530	-0.31586		
Proliferation signature	0.3938	$<.0001$		
			0.14079	-
BHP6	-0.08362	-0.02660	0.0292	
BMP6	0.1967	0.6818		
MHC	0.17837	0.15082	-0.13411	0.08650
MHC class II signature	0.0056	0.0194	0.0379	0.1817

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Only one p-value would survive Bonferroni correction.
However, getting $\mathrm{P}<0.05$ for 5 of the remaining 9 correlations seems unlikely to happen by chance.

In this case, Bonferroni correction is quite conservative.

Large scale T-testing

Microarrays now contain more than 40.000 probes: Too many to test them one by one and hope that they can survive Bonferroni correction.

Assume $\alpha=0.05, N=40000$
H_{0}^{i} : gene i is not differentially expressed, $i=1, \ldots 40000$.
Reject H_{0}^{i} if $p_{i} \cdot 40000 \leq 0.05$
i.e. if $p_{i} \leq 0.00000025$.

The original p-values must be very small in order to reject.

The problem of conservative corrections

There are two problems with conservative correction:

1. Need very small p-value to reject H_{0}.
2. The power of the test is low.

Alternative p-value corrections

Several (less conservative) methods exist. Two groups of methods:

- Methods that control the family-wise error rate (FWER).
- Methods that control the false discovery rate (FDR).

Alternative p-value corrections

Possible outcomes from m hypothesis tests:

Outline

Hypothesis testing
Multiple testing
P-value correction

	No. true	No. false	Total
No. accepted	U	T	$m-R$
No. rejected	V	S	R
Total	m_{0}	$m-m_{0}$	m

V : no. of type I errors (false positives)
T : no. of type II errors (false negatives)

Family-wise error rate (FWER)

- The probability of at least one type I error
- FWER = $\mathrm{P}(V \geq 1)$
- Control FWER at a level α.
- Procedures that adjust the p-values separately.
- Single step procedures.
- More powerful procedures adjust sequentially, from the smallest to the largest, or vice versa.
- Step-down and step-up methods
- The Bonferroni correction controls the FWER.

Methods that control the FWER

Hypothesis testing

- Bonferroni
- Sidak
- Bonferroni-Holm
- Westfall \& Young

Sidak correction

Assumes independent tests.
The adjusted p-value is found from the formula

$$
\tilde{p}_{i}=1-\left(1-p_{i}\right)^{1 / n}
$$

where p_{i} is the unadjusted p-value and n is the number of tests.

Very similar to the Bonferroni correction, very conservative.

Bonferroni-Holm

Step-down procedure, adjust p-values sequentially.
Order the $k p$-values, let $p_{(1)}$ be the smallest, $p_{(2)}$ the second smallest and so on.

If $p_{(1)}<\alpha / k$, reject $H_{0,1}$ and continue...
If $p_{(2)}<\alpha /(k+1-2)=\alpha /(k-1)$, reject $H_{0,2}$ and so on...
until the hypothesis cannot be rejected.

Bonferroni-Holm

Outline

Hypothesis testing
The Bonferroni-Holm adjusted p-values \tilde{p} are then given by

$$
\begin{aligned}
\tilde{p}_{1} & =k \cdot p_{1} \\
\tilde{p}_{j} & =\max \left((k-j+1) \cdot p_{j}, \tilde{p}_{j-1}\right), \quad 2 \leq j \leq k
\end{aligned}
$$

Adjusted p-values greater than 1 are set to 1.

Example: Bonferroni-Holm

Rank	P-value	Corrected P-value		
1	0.00082	$* 19=0.01558$	$*$	
2	0.00143	$* 18=0.02574$	$*$	
3	0.00171	$* 17=0.02907$	$*$	
4	0.00242	$* 16=0.03872$	$*$	
5	0.00538	$* 15=0.08070$		
6	0.00905	$* 14=0.12670$		
7	0.01241	$* 13=0.16133$		
8	0.03512	$* 12=0.42144$		
9	0.04366	$* 11=0.48026$		
10	0.07431	$* 10=0.74311$		
11	0.14253	$* 9$	1.00000	
12	0.15675	$* 8$	1.00000	
13	0.21415	$* 7$	1.00000	
14	0.25134	$* 6$	1.00000	
15	0.41526	$* 5$	1.00000	
16	0.46761	$* 4$	1.00000	
17	0.57738	$* 3$	1.00000	
18	0.75464	$* 2$	1.00000	
19	0.89514	$* 1$	1.00000	

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Bonferroni-Holm p-value corresponds to removing tests as they are found to be significant and perform Bonferroni correction on the remaining.

Example: Bonferroni-Holm

Rank	P-value	Corrected P-value		
1	0.00082	$* 19=0.01558$	$*$	
2	0.00143	$* 18=0.02574$	$*$	
3	0.00171	$* 17=0.02907$	$*$	
4	0.00242	$* 16=0.03872$	$*$	
5	0.00538	$* 15=0.08070$		
6	0.00905	$* 14=0.12670$		
7	0.01241	$* 13=0.16133$		
8	0.03512	$* 12=0.42144$		
9	0.04366	$* 11=0.48026$		
10	0.07431	$* 10=0.74311$		
11	0.14253	$* 9$	1.00000	
12	0.15675	$* 8$	1.00000	
13	0.21415	$* 7$	1.00000	
14	0.25134	$* 6$	1.00000	
15	0.41526	$* 5$	1.00000	
16	0.46761	$* 4$	1.00000	
17	0.57738	$* 3$	1.00000	
18	0.75464	$* 2$	1.00000	
19	0.89514	$* 1$	1.00000	

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

Bonferroni-Holm p-value corresponds to removing tests as they are found to be significant and perform Bonferroni correction on the remaining.

Permutation tests

Statistical technique to use when distribution is unknown.
Example: Gene set measurements for patient and control group.

For each gene $i=1, \ldots, n$, a test statistic t_{i} is calculated.
Assume $\left|t_{1}\right| \geq\left|t_{2}\right| \geq \ldots \geq\left|t_{n}\right|$.
Permute the 'patient' and 'control' labels \Rightarrow new dataset.
Calculate new $t_{i, b}^{*}$ for the permuted sample.
Repeat B times, B is large number.
The $t_{i, b}^{*}, b=1, \ldots, B$ now constitute a distribution for t_{i} under the null hypothesis.

The p-value of t_{i} can be calculated as

$$
p_{i}=\frac{\text { number of permutations with }\left|t_{i, b}^{*}\right| \geq\left|t_{i}\right|}{\text { number of permutations } B}
$$

Permutation tests

The Westfall and Young step-down correction calculates adjusted p-values directly through permutation.

These p-values take correlations between the tests into account.

$$
\tilde{p}_{i}=\frac{\text { number of permutations with } u_{i, b} \geq\left|t_{i}\right|}{\text { number of permutations }}
$$

where $u_{n, b}=\left|t_{n, b}^{*}\right|$
$u_{i, b}=\max _{I=i, \ldots, n}\left(u_{i+1, b},\left|t_{l, b}^{*}\right|\right), i=n-1, \ldots, 1$
Disadvantage: Computer intensive method.

Alternative p-value corrections

Possible outcomes from m hypotheses tests:

Outline

Hypothesis testing
Multiple testing
P-value correction

	No. true	No. false	Total
No. accepted	U	T	$m-R$
No. rejected	V	S	R
Total	m_{0}	$m-m_{0}$	m

V : no. of type I errors (false positives)
T : no. of type II errors (false negatives)

False discovery rate (FDR)

- The expected proportion of false positives among the rejected hypotheses.
- $\mathrm{FDR}=\mathrm{E}[V / R \mid R>0] \cdot P(R>0)$
- Example: If 100 null hypotheses are rejected, with an FDR of $5 \%, 5$ of them will be false positives.
- Various procedures
- The Benjamini-Hochberg procedure
- Other versions

Controlling the false discovery rate

The Benjamini-Hochberg procedure

Assumes independent p-values.
Let $p_{(1)}, \ldots, p_{(m)}$ be the ordered p-values $p_{1}, \ldots p_{m}$.
Start with $p_{(m)}$. Reject $H_{0, m}$ if $p_{(m)} \leq \alpha$.
For the remaining p-values:
Reject $H_{0, i}$ if $\tilde{p}_{(i)} \leq \alpha$
where $\tilde{p}_{(i)}=\min _{k \in\{i, \ldots, n\}} \frac{m \cdot p_{(k)}}{k}$.
Other variations exist.

Simple example

The Benjamini-Hochberg procedure

Assume the unadjusted p-values are $0.007,0.02,0.4$, 0.5.

Outline

Hypothesis testing

The adjusted p-values are then $\tilde{p}_{(i)}=\min _{k \in\{i, \ldots, n\}} \frac{m \cdot p_{(k)}}{k}$:
$\tilde{p}_{(4)}=0.50$
$\tilde{p}_{(3)}=4 \cdot 0.4 / 3=0.53>\tilde{p}_{(4)} \Rightarrow \tilde{p}_{(3)}=4 \cdot 0.5 / 4=0.50$
$\tilde{p}_{(2)}=4 \cdot 0.02 / 2=0.04$
$\tilde{p}_{(1)}=4 \cdot 0.007 / 1=0.028$

Example: Adjusting to control the FDR

Outline

Hypothesis testing

Rank	P-value	
1	0.00082	$* 19 / 3=0.01083$
2	0.00143	$* 19 / 3=0.01083$
3	0.00171	$* 19 / 3=0.01083$
4	0.00242	$* 19 / 4=0.01150$
5	0.00538	$* 19 / 5=0.02044$
6	0.00905	$* 19 / 6=0.02867$
7	0.01241	$* 19 / 7=0.03368$
8	0.03512	$* 19 / 8=0.08341$
9	0.04366	$* 19 / 9=0.09217$
10	0.07431	$* 19 / 10=0.014119$
11	0.14253	$* 19 / 11=0.024619$
12	0.15675	$* 19 / 12=0.24819$
13	0.21415	$* 19 / 13=0.31299$
14	0.25134	$* 19 / 14=0.34110$
15	0.41526	$* 19 / 15=0.52600$
16	0.46761	$* 19 / 16=0.55529$
17	0.57738	$* 19 / 17=0.64531$
18	0.75464	$* 19 / 18=0.79656$
19	0.89514	$* 19 / 19=0.89514$

Multiple testing
P-value correction
Multiple
comparisons

Example: Adjusting to control the FDR

C.C. Günther

Outline

Hypothesis testing

Rank	P-value	
1	0.00082	$* 19 / 3=0.01083$
2	0.00143	$* 19 / 3=0.01083$
3	0.00171	$* 19 / 3=0.01083$
4	0.00242	$* 19 / 4=0.01150$
5	0.00538	$* 19 / 5=0.02044$
6	0.00905	$* 19 / 6=0.02867$
7	0.01241	$* 19 / 7=0.03368$
8	0.03512	$* 19 / 8=0.08341$
9	0.04366	$* 19 / 9=0.09217$
10	0.07431	$* 19 / 10=0.014119$
11	0.14253	$* 19 / 11=0.024619$
12	0.15675	$* 19 / 12=0.24819$
13	0.21415	$* 19 / 13=0.31299$
14	0.25134	$* 19 / 14=0.34110$
15	0.41526	$* 19 / 15=0.52600$
16	0.46761	$* 19 / 16=0.55529$
17	0.57738	$* 19 / 17=0.64531$
18	0.75464	$* 19 / 18=0.79656$
19	0.89514	$* 19 / 19=0.89514$

Multiple testing
P-value correction
Multiple
comparisons

The Benjamini-Hochberg approach

- Controls the FDR.
- Assume independent p-values.
- Commonly used.
- Applies to a set of genes, not to individual genes.
- Does not tell you which p-values are false positives, only how many that are.

Correction of p-values in R

Outline

Hypothesis testing
Function p.adjust is easy to use.
p.adjust(p, method = p.adjust.methods)

Input:

- Vector of p-values.
- Method is e.g. "holm", "bonferroni", "BH".
- Returns the adjusted p-values.

Correction of p-values in R

Many BioConductor packages return corrected p-values themselves.

Example: The 'limma' package by Smyth et al.
Tests for differential expression between groups.
The function topTable returns a table of top-ranked genes with unadjusted and adjusted p-values. Default correction method is Benjamini-Hochberg.

Another approach to multiple testing

Ideally, one should perform one test only, and decide on the test prior to analysing the data.

In reality, data is scarce, and one wants to perform more analyses, get more results and test more hypotheses.

Outline
Hypothesis testing
Multiple testing
P-value correction

One compromise is to divide analyses into two parts:
Hypothesis testing: As rigorous as can be done! Want reliable conclusions.
Hypothesis generating: Less rigorous, allowing data mining, multiple testing, etc. Conclusions are not expected to be reliable in themselves, but give good ideas/candidates for further research.

Another approach to multiple testing

Decide whether you want to control the FWER or the FDR.

Example microarrays:

- Are you most afraid of having gene on your significant list that should not have been there.
- Choose FWER.
- Are you most afraid of missing out on interesting genes.
- Choose FDR.

Another approach to multiple testing

A summary of the methods:

Bonferroni
Bonferroni Step-Down
Westfall and Young Permutation
Benjamini and Hochberg False Discovery Rate
None

Figure from Multiple Testing Corrections, Agilent Technologies

Outline

C.C. Günther

Outline
Hypothesis testing

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Multiple comparisons

One special case of multiple testing is pairwise comparisons of groups.

Example: A doctor is comparing 6 different treatments to find which reduces blood pressure the most by giving each treatment to 10 different patients.

Can use ANOVA (Analysis of Variance) to check if there is any variation between the treatments, and t-tests to compare each pair of treatments. There are 15 pairs, so p-values need to correct for multiple testing.

Analysis of Variance

Let μ_{i} be the expected mean blood pressure for patients receiving treatment $i, i=1, \ldots 6$.

We want to test whether all the means are equal.
If they are not, then some of the variability between observations may be due to the different treatments.

The overall ANOVA test only tells us whether at least one treatment differs from the others, not which treatment does.

Multiple comparisons

ANOVA testing
Step 1: Test if there is any variation between the treatments.
H_{0}^{*} : All treatments have the same mean, $\mu_{1}=\ldots=\mu_{6}$.
H_{1}^{*} : At least one treatment has a different mean.
Step 2: If H_{0}^{*} is rejected, then for each pair of treatments i and j, we test the null hypothesis
$H_{0, i j}$: Treatment i and j have the same mean, $\mu_{i}=\mu_{j}$. vs
$H_{1, i j}$: Treatment i and j do not have the same mean, $\mu_{i} \neq \mu_{j}$.

Multiple comparisons

Outline

Hypothesis testing
Multiple testing
P-value correction

Example output from ANOVA in R:

```
group
\begin{tabular}{rrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
2.358 & 3.543 & 2.646 & 2.885 & 1.327 & 1.042
\end{tabular}
    Df Sum Sq Mean Sq F value Pr(>F)
group }
Residuals 54 40.112 0.7428
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
```


Multiple comparisons

The null hypothesis for each pair of treatments can be tested using a t-test.

However, we need to correct for multiple testing.
Two situations:

- All-against-all comparisons
- Tukey
- One-against-all comparisons
- Dunnet

All-against-all comparisons

Hypothesis testing

Tukey's procedure

- Adjustment of p-values for all-against-all T-tests.
- Controls the FWER.
- When the sample sizes are equal, the control is exact.

All-against-all comparisons

Output from R (using the TukeyHSD function)

Outline
Hypothesis testing
Multiple testing
P-value correction
Multiple
comparisons

One-against-all comparisons

Dunnett's test:

- Adjustment of p-values for one-against-all T-tests.
- One group is e.g. placebo or the standard treatment to which the others should be compared.
- Controls the FWER at level α.

C.C. Günther

Output from R using the glht function in the multcomp package.

Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Dunnett Contrasts
Fit: $\operatorname{aov}($ formula $=y$ ~ group)
Linear Hypotheses:

Summary

- Always try to decide what you want to test and how before looking at the results.
- Always keep multiple testing in mind when you are testing more than one hypothesis.
- When testing many hypotheses, it is usually desirable to control the FDR.
- For a smaller number of hypotheses, controlling the FWER may be the right choice.

