The multiple problems of multiple testing

Clara-Cecilie Günther Based on a presentation by Einar Andreas Rødland

24 November 2011

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple

Multiple testing

Outline

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Multiple testing

C.C. Günther

Outline

Hypothesis testing Multiple testing P-value correction Multiple

・ロト・日本・ キャ・ キャー やくの

Outline

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Multiple testing

C.C. Günther

Outline

Hypothesis testing

Aultiple testing

-value correction

Multiple comparisons

・ロト・日本・日本・日本・日本・日本

Hypothesis testing

The general idea

Define the null hypothesis H_0 and alternative hypothesis H_1 .

Perform experiment.

How likely is the outcome given that the null hypothesis is true?

(日) (四) (日) (日) (日) (日) (日) (日)

Reject or accept null hypothesis.

C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

Multiple testing

The hypothesis test

Example: Is the coin *fair*, or is either head or tail more likely?

- H_0 : The coin is fair. H_1 : The coin is not fair.
 - 1. Toss coin N times.
 - 2. Count the number of heads and tails.
 - Compare to what would be expected from a fair coin.

If the number of heads and tails is consistent with what could be expected from a fair coin, the *null-hypothesis* that the coin is fair should be accepted; if not, the null-hypothesis should be rejected.

C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

Multiple testing

The hypothesis test

Example:

If we toss a fair coin 20 times, we can compute the probability of getting x heads (x = 0, ..., 20).

The probability of getting at most 5 heads is appr. 2%; that of 15 more is also appr. 2%.

Our test: The number of heads should be between 6 and 14, otherwise we should reject the null-hypothesis (i.e. that the coin is fair).

Multiple testing C.C. Günther

Outline

Hypothesis testing

Multiple testing P-value correction

Multiple

The hypothesis test

Example:

If we toss a fair coin 20 times, we can compute the probability of getting x heads (x = 0, ..., 20).

The probability of getting at most 5 heads is appr. 2%; that of 15 more is also appr. 2%.

Our test: The number of heads should be between 6 and 14, otherwise we should reject the null-hypothesis (i.e. that the coin is fair).

C.C. Günther Outline Hypothesis testing Multiple testing

Multiple testing

P-value correction

Type I and type II errors

What if our decision is wrong?

There are two types of errors to make:

	<i>H</i> ₀ is true	H_0 is false
Reject H ₀	False positive Type I error	ОК
Accept H ₀	ОК	False negative Type II error

Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing

-value correction

Multiple comparisons

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Type I and Type II errors

Null-hypothesis:

The coin is fair.

Our test: Toss 20 times. Reject null-hypothesis if number of heads is less than 6 or greater than 14.

Type I error: Rejecting the null hypothesis when it is true. Even if the coin is fair, we have 4% probability of rejecting the null-hypothesis.

Type II error: Not rejecting the null hypothesis when it is not true. Even if the coin is biased, we may end up accepting the null-hypothesis.

Multiple testing

C.C. Günther

Outline

Significance level of a test

Significance level: The probability of type I error (false positive) of a given test.

It is very common to perform tests at the 5% significance level: i.e. so that the false positive risk is *at most* 5%.

If the false positive risk is less than the selected significance level, the test is *conservative*.

If the false positive risk is larger than the selected significance level, the test is **wrong**!

Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing

P-value correction

The probability that a false H_0 is rejected.

It is 1 minus the probability of a type II error.

A test with high power have a higher probability to draw the correct conclusion to reject the null hypothesis than a test with low power.

If the probability of a type I error decreases, the power also decreases.

Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing

P-value correction

How do we know when to reject H_0 ?

Calculate the *p*-value and compare with the chosen significance level.

The *p*-value is the probability of observing what we have observed or something 'more extreme' when H_0 is true.

(日) (四) (日) (日) (日) (日) (日) (日)

Small *p*-values \Rightarrow Reject H_0 .

Large *p*-values \Rightarrow Accept H_0 .

Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing

P-value correction

P-values

Our experiment:

We toss the coin 20 times and get 7 heads.

P-value:

The probability of getting this outcome or one that deviates even more from what is expected under the null-hypothesis.

 $P = Pr[X \le 7 \text{ or } X \ge 13 \mid \text{null-hyp.}] = 0.263 \text{ (or } 26.3\%).$

The deviation from the null-hypothesis is *statistically significant* at the 5% *significance level* if $P \le 0.05$.

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing

P-value correction

P-values

Our experiment:

We toss the coin 20 times and get 7 heads.

P-value:

The probability of getting this outcome or one that deviates even more from what is expected under the null-hypothesis.

 $P = Pr[X \le 7 \text{ or } X \ge 13 \mid \text{null-hyp.}] = 0.263 \text{ (or 26.3\%)}.$

The deviation from the null-hypothesis is *statistically significant* at the 5% *significance level* if $P \le 0.05$.

Multiple testing C.C. Günther

Outline

P-values

The P-values give a measure of the statistical strength of the evidence against the null-hypothesis.

- P>0.05 At the 5% significance level, this is considered to be what you could expect if the null-hypothesis is true.
- P from 0.01 to 0.05 Considered statistically significant, but not strong evidence.
 - P<0.01 Fairly strong evidence.
 - P<0.001 Strong evidence.

The P-value does not tell if the deviation from the null-hypothesis is small or large, important or unimportant.

Multiple testing

C.C. Günther

Outline

Confidence intervals

What if we don't assume that the coin is fair?

Assume the coin has probability p of head in each toss for some probability $p \in [0, 1]$.

Test which values of p may be rejected, and which must be accepted as possible values. If tests are at the 5% significance level, the accepted values of p form the 95% confidence interval.

The null-hypothesis that the coin is fair (p = 1/2) is accepted if p = 1/2 is contained in the confidence interval.

For 7 heads in 20 tosses, the 95% confidence interval for the probability of heads is [0.15, 0.59], which contains 1/2.

Multiple testing C.C. Günther

Outline

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

-value correction

Multiple comparisons

・ロト・日本・日本・日本・日本・日本

Testing multiple hypotheses at one time

Example:

Let's test five coins to see if they are fair.

Toss each coin 20 times, and use our test.

If the coins are fair, for each we have 4% probability of a type I error.

What is the probability of making at least one type I error?

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Testing multiple hypotheses at one time

What is the probability of making at least one type I error?

Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing P-value correction

Multiple comparisons

P(at least one type I error) = 1 - P(no type I errors)

$$= 1 - P(\text{no type I error coin 1})$$

$$\dots \cdot P(\text{no type I error coin 5})$$

(日) (四) (日) (日) (日) (日) (日) (日)

$$= 1 - (1 - 0.04)^5 = 0.18$$

The risk of making at least one type I error is 18%.

Example: 10 000 genes

 H_0^i : gene *i* is not differentially expressed, i = 1, ..., 10000

Assume: No differentially expressed genes, H_0^i true for all *i*.

Significance level $\alpha = 0.01$.

Expect $10000 \cdot \alpha = 10000 \cdot 0.01 = 100$ genes to have a p-value smaller than 0.01 by chance.

We expect to find 100 differentially expressed genes when in fact none of them are!

Many tests \rightarrow many false positives \rightarrow not good!

Multiple testing C.C. Günther Outline Hypothesis testing

Multiple testing P-value correction

The problem of multiple hypothesis testing

When performing several tests, the chance of getting one or more false positives increases.

・ロット (雪) (日) (日) (日)

Multiple testing problem: Need to control the risk of false positives (type I error) when performing a large number of tests.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Bad solution to the multiple testing problem

The big DON'T: It is **not** permissible to perform several tests and only present those that gave the desired outcome.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Bad solution to the multiple testing problem

The big DON'T: It is **not** permissible to perform several tests and only present those that gave the desired outcome.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

All-against-all correlations

Example data: Large B-cell lymphoma data.

Correlation between gene expression signatures.

Pearson correlation P-value	sign_ germB	sign_ lymph	sign_ prolif	BHP6	MHC
sign_germB	1.00000	0.16336	-0.05530	-0.08362	0.17837
Germinal center B cell sign.		0.0113	0.3938	0.1967	0.0056
sign_lymph	0.16336	1.00000	-0.31586	-0.02660	0.15082
Lymph node signature	0.0113		<.0001	0.6818	0.0194
sign_prolif	-0.05530	-0.31586	1.00000	0.14079	-0.13411
Proliferation signature	0.3938	<.0001		0.0292	0.0379
BHP6	-0.08362	-0.02660	0.14079	1.00000	0.08650
BMP6	0.1967	0.6818	0.0292		0.1817
MHC	0.17837	0.15082	-0.13411	0.08650	1.00000
MHC class II signature	0.0056	0.0194	0.0379	0.1817	

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

-value correction

Multiple comparisons

Computing all pairwise correlations and then presenting only those that are statistically significant, is not acceptable!

Large scale T-testing

Example data: Expression from 100 genes, outcome is survival. Perform t-test for each gene.

 H_0^i : gene *i* is not differentially expressed, i = 1, ..., 100.

Rank	Gene	P-value	Rank	Gene	P-value	
1	GENE84X	0.00037	13	GENE6X	0.02083	
2	GENE73X	0.00431	14	GENE71X	0.02401	
3	GENE48X	0.00544	15	GENE49X	0.02463	
4	GENE1X	0.00725	16	GENE38X	0.02751	
5	GENE81X	0.00769	17	GENE46X	0.02804	
6	GENE91X	0.00793	18	GENE75X	0.02892	
7	GENE96X	0.00803	19	GENE36X	0.04072	
8	GENE22X	0.00907	20	GENE83X	0.04519	
9	GENE95X	0.00977	21	GENE8X	0.04608	
10	GENE58X	0.01734	22	GENE21X	0.05213	
11	GENE77X	0.01911	23	GENE78X	0.06940	
12	GENE33X	0.01974	24	GENE16X	0.07046	

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Multiple comparisons

Presenting only those with small P-value is inappropriate when we have done 100 tests!

Other cases where multiple testing occurs

Example: A researcher wants to compare incidence of disease between rural and urban populations. He finds a difference for two out of ten common diseases (P=0.02 and 0.03 resp.).

Example: A researcher wants to check if health depends on social status. Both health and social status can be measured in many different, although similar, ways. He checks all combinations.

Example: A researcher cannot decide which is more appropriate to use: Pearson correlation or Spearman. He picks the one that gives the lowest P-value.

Multiple testing

C.C. Günther

Outline

ypothesis testing

Multiple testing

P-value correction

Outline

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Multiple testing

C.C. Günther

Outline

lypothesis testing

Aultiple testing

P-value correction

Multiple comparisons

・ロト・日本・山田・山田・山口・

Corrected *p*-values

The original *p*-values do not tell the full story.

Instead of using the original *p*-values for decision making, we should use corrected ones.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing **P-value correction** Multiple comparisons

False positive rate under multiple tests

Result: If you perform *N* tests at a significance level α , then the probability of having at least one false positive is at most $N \times \alpha$.

In many cases, the risk will be less, but this result is true even in the worst of cases.

It is also correct if some of the null-hypotheses are actually wrong.

May use this to formulate a *multiple test* that controls the over-all risk of having a false positive.

Multiple testing C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Bonferroni's *p*-value correction

Bonferroni: If you perform *N* tests at a significance level α/N , then the probability of having at least one false positive is at most α .

Bonferroni *p***-value:** If you run *N* tests, multiply all the *p*-values by *N* to get the Bonferroni corrected *p*-values.

Result: The probability of getting a Bonferroni corrected p-value less than α for a true null-hypothesis is at most α .

Multiple testing

C.C. Günther

Outline Hypothesis testing Multiple testing P-value correction Multiple

Bonferroni's P-value correction

Pearson correlation / P-value

sign_germB
Germinal center B cell sign.

Lymph node signature 0.0113 sign_prolif -0.05530 -0.31586 - Proliferation signature 0.3938 <.0001 - BHP6 -0.08362 -0.02660 0.14079 DMP6 0.1967 0.6818 0.0292 MHC 0.17837 0.15082 -0.13411 0.0866 MHC class II signature 0.0056 0.0194 0.0379 0.18	sign_lymph	0.16336	-		
sign_prolif -0.05530 -0.31586 - Proliferation signature 0.3938 <.0001	Lymph node signature	0.0113			
Proliferation signature 0.3938 <.0001 BHP6 -0.08362 -0.02660 0.14079 BMP6 0.1967 0.6818 0.0292 MHC 0.17837 0.15082 -0.13411 0.0866 MHC class II signature 0.0056 0.0194 0.0379 0.18	sign_prolif	-0.05530	-0.31586	-	
BHP6 -0.08362 -0.02660 0.14079 BMP6 0.1967 0.6818 0.0292 MHC 0.17837 0.15082 -0.13411 0.0863 MHC class II signature 0.0056 0.0194 0.0379 0.18	Proliferation signature	0.3938	<.0001		
BMP6 0.1967 0.6818 0.0292 MHC 0.17837 0.15082 -0.13411 0.086 MHC class II signature 0.0056 0.0194 0.0379 0.18	BHP6	-0.08362	-0.02660	0.14079	-
MHC 0.17837 0.15082 -0.13411 0.086 MHC class II signature 0.0056 0.0194 0.0379 0.18	BMP6	0.1967	0.6818	0.0292	
MHC class II signature 0.0056 0.0194 0.0379 0.18	MHC	0.17837	0.15082	-0.13411	0.08650
	MHC class II signature	0.0056	0.0194	0.0379	0.1817

Multiply each *p*-value by 10 to get the Bonferroni corrected P-value.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Multiple comparisons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bonferroni's P-value correction

Pearson correlation / P-value

sign_germB
Germinal center B cell sign.

sign_lymph	0.16336	-		
Lymph node signature	0.0113			
sign_prolif	-0.05530	-0.31586	-	
Proliferation signature	0.3938	<.0001		
BHP6	-0.08362	-0.02660	0.14079	-
BMP6	0.1967	0.6818	0.0292	
MHC	0.17837	0.15082	-0.13411	0.08650
MHC class II signature	0.0056	0.0194	0.0379	0.1817

Multiply each *p*-value by 10 to get the Bonferroni corrected P-value.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Multiple comparisons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires us to multiply all P-values with 100.

Rank	Gene	P-value	Rank	Gene	P-value
1	GENE84X	0.00037	13	GENE6X	0.02083
2	GENE73X	0.00431	14	GENE71X	0.02401
3	GENE48X	0.00544	15	GENE49X	0.02463
4	GENE1X	0.00725	16	GENE38X	0.02751
5	GENE81X	0.00769	17	GENE46X	0.02804
6	GENE91X	0.00793	18	GENE75X	0.02892
7	GENE96X	0.00803	19	GENE36X	0.04072
8	GENE22X	0.00907	20	GENE83X	0.04519
9	GENE95X	0.00977	21	GENE8X	0.04608
10	GENE58X	0.01734	22	GENE21X	0.05213
11	GENE77X	0.01911	23	GENE78X	0.06940
12	GENE33X	0.01974	24	GENE16X	0.07046

Only the smallest P-value survives Bonferroni correction.

Multiple testing

C.C. Günther

Outline

ypothesis testing

Multiple testing

P-value correction

Multiple comparisons

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires us to multiply all P-values with 100.

Rank	Gene	P-value	Rank	Gene	P-value
1	GENE84X	0.00037	13	GENE6X	0.02083
2	GENE73X	0.00431	14	GENE71X	0.02401
3	GENE48X	0.00544	15	GENE49X	0.02463
4	GENE1X	0.00725	16	GENE38X	0.02751
5	GENE81X	0.00769	17	GENE46X	0.02804
6	GENE91X	0.00793	18	GENE75X	0.02892
7	GENE96X	0.00803	19	GENE36X	0.04072
8	GENE22X	0.00907	20	GENE83X	0.04519
9	GENE95X	0.00977	21	GENE8X	0.04608
10	GENE58X	0.01734	22	GENE21X	0.05213
11	GENE77X	0.01911	23	GENE78X	0.06940
12	GENE33X	0.01974	24	GENE16X	0.07046

Only the smallest P-value survives Bonferroni correction.

Multiple testing

C.C. Günther

Outline

ypothesis testing

Multiple testing

P-value correction

Bonferroni's p-value correction

Bonferroni correction is the most well-known multiple testing correction:

- Very simple.
- Always correct: no model assumptions, no assumption of independence.
- Gives one new p-value for each test.
- Useable even if some hypotheses are false.
- If some tests produce false positives even after correction, it will still be reliable on other tests (unless correlated).

However, Bonferroni-correction is often conservative!

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Bonferroni's *p*-value correction

Pearson correlation / P-value

sign_germB
Germinal center B cell sign.

sign_lymph	0.16336	-		
Lymph node signature	0.0113			
sign_prolif	-0.05530	-0.31586	-	
Proliferation signature	0.3938	<.0001		
BHP6	-0.08362	-0.02660	0.14079	-
BMP6	0.1967	0.6818	0.0292	
MHC	0.17837	0.15082	-0.13411	0.08650
MHC class II signature	0.0056	0.0194	0.0379	0.1817

Only one *p*-value would survive Bonferroni correction.

However, getting P<0.05 for 5 of the remaining 9 correlations seems unlikely to happen by chance.

In this case, Bonferroni correction is quite conservative.

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons
Bonferroni's *p*-value correction

Pearson correlation / P-value

sign_germB
Germinal center B cell sign.

sign_lymph Lymph node signature	0.16336 0.0113	-		
sign_prolif Proliferation signature	-0.05530 0.3938	-0.31586 <.0001	-	
BHP6	-0.08362	-0.02660	0.14079	-
BMP6	0.1967	0.6818	0.0292	
MHC	0.17837	0.15082	-0.13411	0.08650
MHC class II signature	0.0056	0.0194	0.0379	0.1817

Only one *p*-value would survive Bonferroni correction.

However, getting P<0.05 for 5 of the remaining 9 correlations seems unlikely to happen by chance.

In this case, Bonferroni correction is quite conservative.

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

Large scale T-testing

Microarrays now contain more than 40.000 probes: Too many to test them one by one and hope that they can survive Bonferroni correction.

Assume $\alpha = 0.05$, N = 40000

 H_0^i : gene *i* is not differentially expressed, $i = 1, \dots 40000$.

Reject H_0^i if $p_i \cdot 40000 \le 0.05$

i.e. if $p_i \le 0.0000025$.

The original p-values must be very small in order to reject.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

The problem of conservative corrections

There are two problems with conservative correction:

・ロト ・ 雪 ・ ・ ヨ ・ ・ ヨ ・

- 1. Need very small *p*-value to reject H_0 .
- 2. The power of the test is low.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Alternative *p*-value corrections

Several (less conservative) methods exist. Two groups of methods:

- Methods that control the family-wise error rate (FWER).
- Methods that control the false discovery rate (FDR).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Alternative *p*-value corrections

Possible outcomes from *m* hypothesis tests:

	No. true	No. false	Total
No. accepted	U	Т	m - R
No. rejected	V	S	R
Total	m_0	$m - m_0$	т

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

V: no. of type I errors (false positives) *T*: no. of type II errors (false negatives) Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction

Family-wise error rate (FWER)

The probability of at least one type I error

- ► FWER = P(V ≥ 1)
- Control FWER at a level α .
 - Procedures that adjust the p-values separately.
 - Single step procedures.
 - More powerful procedures adjust sequentially, from the smallest to the largest, or vice versa.

(日) (四) (日) (日) (日) (日) (日) (日)

- Step-down and step-up methods
- The Bonferroni correction controls the FWER.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Methods that control the FWER

- Bonferroni
- Sidak
- Bonferroni–Holm
- Westfall & Young

Multiple testing

C.C. Günther

Outline

lypothesis testing

Iultiple testing

P-value correction

Multiple comparisons

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Assumes independent tests.

The adjusted *p*-value is found from the formula

 $\tilde{p}_i = 1 - (1 - p_i)^{1/n}$

where p_i is the unadjusted *p*-value and *n* is the number of tests.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

Very similar to the Bonferroni correction, very conservative.

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

Bonferroni-Holm

Step-down procedure, adjust *p*-values sequentially.

Order the *k p*-values, let $p_{(1)}$ be the smallest, $p_{(2)}$ the second smallest and so on.

If $p_{(1)} < \alpha/k$, reject $H_{0,1}$ and continue...

If
$$p_{(2)} < \alpha/(k + 1 - 2) = \alpha/(k - 1)$$
, reject $H_{0,2}$

and so on...

until the hypothesis cannot be rejected.

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple

Bonferroni-Holm

The Bonferroni-Holm adjusted *p*-values \tilde{p} are then given by

$$egin{array}{rcl} ilde{p}_1&=&k\cdot p_1\ ilde{p}_j&=&\max((k-j+1)\cdot p_j, ilde{p}_{j-1}), \ 2\leq j\leq k \end{array}$$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

Adjusted *p*-values greater than 1 are set to 1.

Multiple testing C.C. Günther Outline

Hypothesis testing Multiple testing P-value correction

Example: Bonferroni-Holm

Rank	P-value	Corrected P-value
1	0.00082	* 19 = 0.01558
2	0.00143	* 18 = 0.02574
3	0.00171	* 17 = 0.02907
4	0.00242	* 16 = 0.03872
5	0.00538	* 15 = 0.08070
6	0.00905	* 14 = 0.12670
7	0.01241	* 13 = 0.16133
8	0.03512	* 12 = 0.42144
9	0.04366	* 11 = 0.48026
10	0.07431	* 10 = 0.74311
11	0.14253	* 9 1.00000
12	0.15675	* 8 1.00000
13	0.21415	* 7 1.00000
14	0.25134	* 6 1.00000
15	0.41526	* 5 1.00000
16	0.46761	* 4 1.00000
17	0.57738	* 3 1.00000
18	0.75464	* 2 1.00000
19	0.89514	* 1 1.00000

Bonferroni-Holm *p*-value corresponds to removing tests as they are found to be significant and perform Bonferroni correction on the remaining. Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Example: Bonferroni-Holm

Rank	P-value	Corrected P-value
1	0.00082	* 19 = 0.01558
2	0.00143	* 18 = 0.02574
3	0.00171	* 17 = 0.02907
4	0.00242	* 16 = 0.03872
5	0.00538	* 15 = 0.08070
6	0.00905	* 14 = 0.12670
7	0.01241	* 13 = 0.16133
8	0.03512	* 12 = 0.42144
9	0.04366	* 11 = 0.48026
10	0.07431	* 10 = 0.74311
11	0.14253	* 9 1.00000
12	0.15675	* 8 1.00000
13	0.21415	* 7 1.00000
14	0.25134	* 6 1.00000
15	0.41526	* 5 1.00000
16	0.46761	* 4 1.00000
17	0.57738	* 3 1.00000
18	0.75464	* 2 1.00000
19	0.89514	* 1 1.00000

Bonferroni-Holm *p*-value corresponds to removing tests as they are found to be significant and perform Bonferroni correction on the remaining.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Permutation tests

Statistical technique to use when distribution is unknown.

Example: Gene set measurements for patient and control group.

For each gene i = 1, ..., n, a test statistic t_i is calculated.

Assume $|t_1| \ge |t_2| \ge ... \ge |t_n|$.

Permute the 'patient' and 'control' labels \Rightarrow new dataset.

Calculate new $t_{i,b}^*$ for the permuted sample.

Repeat *B* times, *B* is large number.

The $t_{i,b}^*$, b = 1, ..., B now constitute a distribution for t_i under the null hypothesis.

The *p*-value of t_i can be calculated as

$$p_i = \frac{\text{number of permutations with } |t_{i,b}^*| \ge |t_i|}{\text{number of permutations } B}$$

Multiple testing

C.C. Günther

Outline Hypothesis testing Multiple testing P-value correction Multiple

Permutation tests

The Westfall and Young step-down correction calculates adjusted *p*-values directly through permutation.

These *p*-values take correlations between the tests into account.

 $\tilde{p}_i = rac{\text{number of permutations with } u_{i,b} \ge |t_i|}{\text{number of permutations}}$

where $u_{n,b} = |t_{n,b}^*|$

$$u_{i,b} = \max_{l=i,...,n}(u_{i+1,b}, |t_{l,b}^*|), \ i = n-1,...,1$$

Disadvantage: Computer intensive method.

Multiple testing

C.C. Günther

Outline

ypothesis testing

Multiple testing

P-value correction

Alternative *p*-value corrections

Possible outcomes from *m* hypotheses tests:

	No. true	No. false	Total
No. accepted	U	Т	m - R
No. rejected	V	S	R
Total	m_0	$m - m_0$	т

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

V: no. of type I errors (false positives) *T*: no. of type II errors (false negatives) Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple

False discovery rate (FDR)

- The expected proportion of false positives among the rejected hypotheses.
 - ► FDR=E[V/R|R > 0]·P(R > 0)
- Example: If 100 null hypotheses are rejected, with an FDR of 5%, 5 of them will be false positives.

・ロト ・ 雪 ・ ・ ヨ ・ ・ ヨ ・

- Various procedures
 - The Benjamini-Hochberg procedure
 - Other versions

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Controlling the false discovery rate

The Benjamini-Hochberg procedure

Assumes independent *p*-values.

Let $p_{(1)}, \ldots, p_{(m)}$ be the ordered *p*-values p_1, \ldots, p_m .

Start with $p_{(m)}$. Reject $H_{0,m}$ if $p_{(m)} \leq \alpha$.

For the remaining *p*-values:

Reject $H_{0,i}$ if $\tilde{p}_{(i)} \leq \alpha$

where $\tilde{p}_{(i)} = \min_{k \in \{i,...,n\}} \frac{m \cdot p_{(k)}}{k}$.

Other variations exist.

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Multiple comparisons

Simple example

The Benjamini-Hochberg procedure

Assume the unadjusted p-values are 0.007, 0.02, 0.4, 0.5.

The adjusted *p*-values are then $\tilde{p}_{(i)} = \min_{k \in \{i,...,n\}} \frac{m \cdot p_{(k)}}{k}$:

$$\tilde{p}_{(4)} = 0.50$$

 $\tilde{p}_{(3)} = 4 \cdot 0.4/3 = 0.53 > \tilde{p}_{(4)} \Rightarrow \tilde{p}_{(3)} = 4 \cdot 0.5/4 = 0.50$
 $\tilde{p}_{(2)} = 4 \cdot 0.02/2 = 0.04$
 $\tilde{p}_{(1)} = 4 \cdot 0.007/1 = 0.028$

(日) (四) (日) (日) (日) (日) (日) (日)

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

Example: Adjusting to control the FDR

Rank	P-value	FDR (5%)
1	0.00082	* 19 / 3 = 0.01083
2	0.00143	* 19 / 3 = 0.01083
3	0.00171	* 19 / 3 = 0.01083
4	0.00242	* 19 / 4 = 0.01150
5	0.00538	* 19 / 5 = 0.02044
6	0.00905	* 19 / 6 = 0.02867
7	0.01241	* 19 / 7 = 0.03368
8	0.03512	* 19 / 8 = 0.08341
9	0.04366	* 19 / 9 = 0.09217
10	0.07431	* 19 / 10 = 0.014119
11	0.14253	* 19 / 11 = 0.024619
12	0.15675	* 19 / 12 = 0.24819
13	0.21415	* 19 / 13 = 0.31299
14	0.25134	* 19 / 14 = 0.34110
15	0.41526	* 19 / 15 = 0.52600
16	0.46761	* 19 / 16 = 0.55529
17	0.57738	* 19 / 17 = 0.64531
18	0.75464	* 19 / 18 = 0.79656
19	0.89514	* 19 / 19 = 0.89514

Multiple testing

C.C. Günther

Outline

lypothesis testing

lultiple testing

P-value correction

Multiple comparisons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: Adjusting to control the FDR

Rank	P-value	FDR (5%)
1	0.00082	* 19 / 3 = 0.01083
2	0.00143	* 19 / 3 = 0.01083
3	0.00171	* 19 / 3 = 0.01083
4	0.00242	* 19 / 4 = 0.01150
5	0.00538	* 19 / 5 = 0.02044
6	0.00905	* 19 / 6 = 0.02867
7	0.01241	* 19 / 7 = 0.03368
8	0.03512	* 19 / 8 = 0.08341
9	0.04366	* 19 / 9 = 0.09217
10	0.07431	* 19 / 10 = 0.014119
11	0.14253	* 19 / 11 = 0.024619
12	0.15675	* 19 / 12 = 0.24819
13	0.21415	* 19 / 13 = 0.31299
14	0.25134	* 19 / 14 = 0.34110
15	0.41526	* 19 / 15 = 0.52600
16	0.46761	* 19 / 16 = 0.55529
17	0.57738	* 19 / 17 = 0.64531
18	0.75464	* 19 / 18 = 0.79656
19	0.89514	* 19 / 19 = 0.89514

Multiple testing

C.C. Günther

Outline

lypothesis testing

lultiple testing

P-value correction

Multiple comparisons

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Benjamini-Hochberg approach

- Controls the FDR.
- Assume independent p-values.
- Commonly used.
- Applies to a set of genes, not to individual genes.
- Does not tell you which p-values are false positives, only how many that are.

(日) (四) (日) (日) (日) (日) (日) (日)

Multiple testing

C.C. Günther

Multiple testing P-value correction

Outline

Multiple

Correction of *p*-values in R

Function p.adjust is easy to use.

p.adjust(p, method = p.adjust.methods)

Input:

- Vector of p-values.
- Method is e.g. "holm", "bonferroni", "BH".
- Returns the adjusted *p*-values.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Multiple comparisons

(日) (四) (日) (日) (日) (日) (日) (日)

Correction of *p*-values in R

Many BioConductor packages return corrected *p*-values themselves.

Example: The 'limma' package by Smyth et al.

Tests for differential expression between groups.

The function topTable returns a table of top-ranked genes with unadjusted and adjusted p-values. Default correction method is Benjamini-Hochberg.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Another approach to multiple testing

Ideally, one should perform one test only, and decide on the test prior to analysing the data.

In reality, data is scarce, and one wants to perform more analyses, get more results and test more hypotheses.

One compromise is to divide analyses into two parts:

Hypothesis testing: As rigorous as can be done! Want reliable conclusions.

Hypothesis generating: Less rigorous, allowing data mining, multiple testing, etc. Conclusions are not expected to be reliable in themselves, but give good ideas/candidates for further research. C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple

Multiple testing

Another approach to multiple testing

Decide whether you want to control the FWER or the FDR.

Example microarrays:

- Are you most afraid of having gene on your significant list that should not have been there.
 - Choose FWER.
- Are you most afraid of missing out on interesting genes.

(日) (四) (日) (日) (日) (日) (日) (日)

Choose FDR.

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Another approach to multiple testing

A summary of the methods:

Bonferroni

Bonferroni Step-Down

Westfall and Young Permutation

Benjamini and Hochberg False Discovery Rate

None

Figure from Multiple Testing Corrections, Agilent Technologies

More false negatives

More false positives

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Outline

Hypothesis testing

Multiple hypothesis testing

P-value correction

Multiple comparisons

Multiple testing

C.C. Günther

Outline Hypothesis testing Multiple testing P-value correction

Multiple comparisons

・ロト・西ト・西ト・日・ つくぐ

One special case of multiple testing is pairwise comparisons of groups.

Example: A doctor is comparing 6 different treatments to find which reduces blood pressure the most by giving each treatment to 10 different patients.

Can use ANOVA (Analysis of Variance) to check if there is any variation between the treatments, and t-tests to compare each pair of treatments. There are 15 pairs, so *p*-values need to correct for multiple testing.

Multiple testing C.C. Günther

Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

Analysis of Variance

Let μ_i be the expected mean blood pressure for patients receiving treatment *i*, *i* = 1, ... 6.

We want to test whether all the means are equal.

If they are not, then some of the variability between observations may be due to the different treatments.

The overall ANOVA test only tells us whether at least one treatment differs from the others, not which treatment does.

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

ANOVA testing

Step 1: Test if there is any variation between the treatments.

 H_0^* : All treatments have the same mean, $\mu_1 = \ldots = \mu_6$.

vs

 H_1^* : At least one treatment has a different mean.

Step 2: If H_0^* is rejected, then for each pair of treatments *i* and *j*, we test the null hypothesis

 $H_{0,ij}$: Treatment *i* and *j* have the same mean, $\mu_i = \mu_j$.

vs

 $H_{1,ij}$: Treatment *i* and *j* do not have the same mean, $\mu_i \neq \mu_j$.

Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

▲□▶▲□▶▲□▶▲□▶ □ のへで

Example output from ANOVA in R:

group 1 2 3 4 5 6 2.358 3.543 2.646 2.885 1.327 1.042 Df Sum Sq Mean Sq F value Pr(>F) group 5 45.394 9.0788 12.222 6.098e-08 *** Residuals 54 40.112 0.7428 --Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Multiple testing C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

The null hypothesis for each pair of treatments can be tested using a t-test.

However, we need to correct for multiple testing.

Two situations:

- All-against-all comparisons
 - Tukey
- One-against-all comparisons
 - Dunnet

Multiple testing

C.C. Günther

Outline Hypothesis testing Multiple testing P-value correction Multiple

comparisons

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

All-against-all comparisons

Tukey's procedure

Adjustment of p-values for all-against-all T-tests.

Multiple testing

C.C. Günther

Multiple testing

Outline

Multiple comparisons

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- Controls the FWER.
- When the sample sizes are equal, the control is exact.

All-against-all comparisons

Output from R (using the TukeyHSD function)

```
Tukey multiple comparisons of means
95% family-wise confidence level
```

```
Fit: aov(formula = y ~ group)
```

\$group

diff	lwr	upr	p adj
1.1846806	0.04591626	2.3234450	0.0369410
0.2884340	-0.85033032	1.4271984	0.9747363
0.5272223	-0.61154207	1.6659867	0.7456503
-1.0312727	-2.17003704	0.1074917	0.0970729
-1.3157768	-2.45454114	-0.1770124	0.0147094
-0.8962466	-2.03501095	0.2425178	0.2020111
-0.6574583	-1.79622270	0.4813060	0.5341050
-2.2159533	-3.35471767	-1.0771889	0.000062
-2.5004574	-3.63922177	-1.3616930	0.000004
0.2387883	-0.89997611	1.3775526	0.9891193
-1.3197067	-2.45847108	-0.1809424	0.0142918
-1.6042108	-2.74297518	-0.4654465	0.0015222
-1.5584950	-2.69725934	-0.4197306	0.0022220
-1.8429991	-2.98176343	-0.7042347	0.0001932
-0.2845041	-1.42326846	0.8542603	0.9762048
	diff 1.1846806 0.2884340 0.5272223 -1.0312727 1.3157768 -0.8962466 -0.6574583 -2.2159533 -2.5004574 0.2387883 -1.3197067 -1.6042108 -1.5584950 -1.8429991 -0.2845041	diff lwr 1.1846806 0.04591626 0.2884340 -0.85033032 0.5272223 -0.61154207 -1.0312727 -2.17003704 -1.3157768 -2.45454114 -0.8962466 -2.03501095 -0.6574583 -3.35471767 -2.2159533 -3.35471767 -2.2387883 -0.89997611 -1.3197067 -2.65847108 -1.6042108 -2.74297518 -1.6042108 -2.98176343 -0.2845041 -1.42326846	diff lwr upr 1.1846806 0.04591626 2.323450 0.2884340 -0.85033032 1.4271984 0.527223 -0.61154207 1.6659867 -1.0312727 -2.17003704 0.1074917 -1.3157768 -2.4545114 -0.1770124 -0.8962466 -2.03501095 0.2425178 -0.6574583 -1.79622270 0.4813060 -2.2159533 -3.53471767 -1.077189 -2.5004574 -3.63922177 -1.3616930 0.2387883 -0.89997611 1.3775526 -1.3197067 -2.45847108 -0.189424 -1.6042108 -2.47297518 -0.4654465 -1.5684950 -2.69725934 -0.4197306 -1.8429991 -2.98176343 -0.7024247 -0.2845041 -1.42326846 0.8542603

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

-value correction

Multiple comparisons

▲□▶▲□▶▲□▶▲□▶ □ ● ●

One-against-all comparisons

Dunnett's test:

- Adjustment of *p*-values for one-against-all T-tests.
- One group is e.g. placebo or the standard treatment to which the others should be compared.

(日) (四) (日) (日) (日) (日) (日) (日)

• Controls the FWER at level α .

Multiple testing

C.C. Günther

Outline

lypothesis testing

Multiple testing

P-value correction

Output from R using the glht function in the multcomp package.

Multiple testing C.C. Günther

Outline

Multiple comparisons

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへの

Multiple testing

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = y ~ group)
Summary

- Always try to decide what you want to test and how before looking at the results.
- Always keep multiple testing in mind when you are testing more than one hypothesis.
- When testing many hypotheses, it is usually desirable to control the FDR.
- For a smaller number of hypotheses, controlling the FWER may be the right choice.

(日) (四) (日) (日) (日) (日) (日) (日)

C.C. Günther Outline Hypothesis testing Multiple testing P-value correction Multiple comparisons

Multiple testing