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Hypothesis testing

The general idea

Define the null hypothesis H0 and alternative hypothesis
H1.

Perform experiment.

How likely is the outcome given that the null hypothesis is
true?

Reject or accept null hypothesis.
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The hypothesis test

Example: Is the coin
fair, or is either head or tail more likely?

H0: The coin is fair. H1: The coin is not fair.

1. Toss coin N times.

2. Count the number of heads and tails.

3. Compare to what
would be expected from a fair coin.

If the number of heads and tails is consistent with what
could be expected from a fair coin, the null-hypothesis
that the coin is fair should be accepted; if not, the
null-hypothesis should be rejected.
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The hypothesis test

P
ro

ba
bi

lit
y

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

Number of heads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example:
If we toss a fair coin
20 times, we can compute
the probability of getting
x heads (x = 0, . . . , 20).

The probability
of getting at most 5
heads is appr. 2%; that of
15 more is also appr. 2%.

Our test: The number of heads should be between 6 and
14, otherwise we should reject the null-hypothesis (i.e.
that the coin is fair).
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Type I and type II errors

What if our decision is wrong?

There are two types of errors to make:

H0 is true H0 is false

Reject H0
False positive

OK
Type I error

Accept H0 OK
False negative
Type II error
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Null-hypothesis:
The coin is fair.

Our test: Toss 20 times.
Reject null-hypothesis
if number of heads is less
than 6 or greater than 14.

Type I error: Rejecting
the null hypothesis when
it is true. Even if the coin
is fair, we have 4% probability of rejecting the
null-hypothesis.

Type II error: Not rejecting the null hypothesis when it is
not true. Even if the coin is biased, we may end up
accepting the null-hypothesis.
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Significance level of a test

Significance level: The probability of type I error (false
positive) of a given test.

It is very common to perform tests at the 5% significance
level: i.e. so that the false positive risk is at most 5%.

If the false positive risk is less than the selected
significance level, the test is conservative.

If the false positive risk is larger than the selected
significance level, the test is wrong !
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The power of a test

The probability that a false H0 is rejected.

It is 1 minus the probability of a type II error.

A test with high power have a higher probability to draw
the correct conclusion to reject the null hypothesis than a
test with low power.

If the probability of a type I error decreases, the power
also decreases.
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How do we know when to reject H0?

Calculate the p-value and compare with the chosen
significance level.

The p-value is the probability of observing what we have
observed or something ’more extreme’ when H0 is true.

Small p-values ⇒ Reject H0.

Large p-values ⇒ Accept H0.
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P-values
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Our experiment:
We toss the coin
20 times and get 7 heads.

P-value:
The probability of getting
this outcome or one
that deviates even more
from what is expected
under the null-hypothesis.

P = Pr [X ≤ 7 or X ≥ 13 | null-hyp.] = 0.263 (or 26.3%).

The deviation from the null-hypothesis is statistically
significant at the 5% significance level if P ≤ 0.05.
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P-values

The P-values give a measure of the statistical strength of
the evidence against the null-hypothesis.

P>0.05 At the 5% significance level, this is considered to
be what you could expect if the null-hypothesis is
true.

P from 0.01 to 0.05 Considered statistically significant, but not
strong evidence.

P<0.01 Fairly strong evidence.

P<0.001 Strong evidence.

The P-value does not tell if the deviation from the
null-hypothesis is small or large, important or
unimportant.
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Confidence intervals

What if we don’t assume that the coin is fair?

Assume the coin has probability p of head in each toss
for some probability p ∈ [0, 1].

Test which values of p may be rejected, and which must
be accepted as possible values. If tests are at the 5%
significance level, the accepted values of p form the 95%
confidence interval.

The null-hypothesis that the coin is fair (p = 1/2) is
accepted if p = 1/2 is contained in the confidence
interval.

For 7 heads in 20 tosses, the 95% confidence interval for
the probability of heads is [0.15,0.59], which contains 1/2.
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Testing multiple hypotheses at one time

Example:
Let’s test five coins to see if they are fair.

Toss each coin 20 times, and use our test.

If the coins are fair, for each we have 4%
probability of a type I error.

What is the probability of making at least one type I error?



Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing

P-value correction

Multiple
comparisons

Testing multiple hypotheses at one time

What is the probability
of making at least one type I error?

P(at least one type I error) = 1 − P(no type I errors)

= 1 − P(no type I error coin 1) ·

. . . · P(no type I error coin 5)

= 1 − (1 − 0.04)5 = 0.18

The risk of making at least one type I error is 18%.
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Example: 10 000 genes

H i
0 : gene i is not differentially expressed, i = 1, . . . 10000

Assume : No differentially expressed genes, H i
0 true for all i.

Significance level α = 0.01.

Expect 10000 · α = 10000 · 0.01 = 100 genes to have a
p-value smaller than 0.01 by chance.

We expect to find 100 differentially expressed genes when in
fact none of them are!

Many tests → many false positives → not good!
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The problem of multiple hypothesis testing

When performing several tests, the chance of getting one
or more false positives increases.

Multiple testing problem: Need to control the risk of
false positives (type I error) when performing a large
number of tests.
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Bad solution to the multiple testing problem

The big DON’T: It is not permissible to perform several
tests and only present those that gave the desired
outcome.
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All-against-all correlations

Example data : Large B-cell lymphoma data.

Correlation between gene expression signatures.

Pearson correlation sign_ sign_ sign_

P-value germB lymph prolif BHP6 MHC

sign_germB 1.00000 0.16336 -0.05530 -0.08362 0.17837

Germinal center B cell sign. 0.0113 0.3938 0.1967 0.0056

sign_lymph 0.16336 1.00000 -0.31586 -0.02660 0.15082

Lymph node signature 0.0113 <.0001 0.6818 0.0194

sign_prolif -0.05530 -0.31586 1.00000 0.14079 -0.13411

Proliferation signature 0.3938 <.0001 0.0292 0.0379

BHP6 -0.08362 -0.02660 0.14079 1.00000 0.08650

BMP6 0.1967 0.6818 0.0292 0.1817

MHC 0.17837 0.15082 -0.13411 0.08650 1.00000

MHC class II signature 0.0056 0.0194 0.0379 0.1817

Computing all pairwise correlations and then presenting
only those that are statistically significant, is not
acceptable!
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Large scale T-testing

Example data: Expression from 100 genes, outcome is
survival. Perform t-test for each gene.

H i
0 : gene i is not differentially expressed,i = 1, . . . 100.

Rank Gene P-value Rank Gene P-value ...

1 GENE84X 0.00037 13 GENE6X 0.02083

2 GENE73X 0.00431 14 GENE71X 0.02401

3 GENE48X 0.00544 15 GENE49X 0.02463

4 GENE1X 0.00725 16 GENE38X 0.02751

5 GENE81X 0.00769 17 GENE46X 0.02804

6 GENE91X 0.00793 18 GENE75X 0.02892

7 GENE96X 0.00803 19 GENE36X 0.04072

8 GENE22X 0.00907 20 GENE83X 0.04519

9 GENE95X 0.00977 21 GENE8X 0.04608

10 GENE58X 0.01734 22 GENE21X 0.05213

11 GENE77X 0.01911 23 GENE78X 0.06940

12 GENE33X 0.01974 24 GENE16X 0.07046

Presenting only those with small P-value is inappropriate
when we have done 100 tests!



Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing

P-value correction

Multiple
comparisons

Other cases where multiple testing occurs

Example: A researcher wants to compare incidence of
disease between rural and urban populations. He finds a
difference for two out of ten common diseases (P=0.02
and 0.03 resp.).

Example: A researcher wants to check if health depends
on social status. Both health and social status can be
measured in many different, although similar, ways. He
checks all combinations.

Example: A researcher cannot decide which is more
appropriate to use: Pearson correlation or Spearman. He
picks the one that gives the lowest P-value.
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Corrected p-values

The original p-values do not tell the full story.

Instead of using the original p-values for decision making,
we should use corrected ones.
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False positive rate under multiple tests

Result: If you perform N tests at a significance level α,
then the probability of having at least one false positive is
at most N × α.

In many cases, the risk will be less, but this result is true
even in the worst of cases.

It is also correct if some of the null-hypotheses are
actually wrong.

May use this to formulate a multiple test that controls the
over-all risk of having a false positive.
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Bonferroni’s p-value correction

Bonferroni: If you perform N tests at a significance level
α/N, then the probability of having at least one false
positive is at most α.

Bonferroni p-value: If you run N tests, multiply all the
p-values by N to get the Bonferroni corrected p-values.

Result: The probability of getting a Bonferroni corrected
p-value less than α for a true null-hypothesis is at most α.



Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing

P-value correction

Multiple
comparisons

Bonferroni’s P-value correction

Pearson correlation / P-value

sign_germB -

Germinal center B cell sign.

sign_lymph 0.16336 -

Lymph node signature 0.0113

sign_prolif -0.05530 -0.31586 -

Proliferation signature 0.3938 <.0001

BHP6 -0.08362 -0.02660 0.14079 -

BMP6 0.1967 0.6818 0.0292

MHC 0.17837 0.15082 -0.13411 0.08650 -

MHC class II signature 0.0056 0.0194 0.0379 0.1817

Multiply each p-value by 10 to get the Bonferroni
corrected P-value.
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Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires
us to multiply all P-values with 100.

Rank Gene P-value Rank Gene P-value ...

1 GENE84X 0.00037 13 GENE6X 0.02083

2 GENE73X 0.00431 14 GENE71X 0.02401

3 GENE48X 0.00544 15 GENE49X 0.02463

4 GENE1X 0.00725 16 GENE38X 0.02751

5 GENE81X 0.00769 17 GENE46X 0.02804

6 GENE91X 0.00793 18 GENE75X 0.02892

7 GENE96X 0.00803 19 GENE36X 0.04072

8 GENE22X 0.00907 20 GENE83X 0.04519

9 GENE95X 0.00977 21 GENE8X 0.04608

10 GENE58X 0.01734 22 GENE21X 0.05213

11 GENE77X 0.01911 23 GENE78X 0.06940

12 GENE33X 0.01974 24 GENE16X 0.07046

Only the smallest P-value survives Bonferroni correction.
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Large scale T-testing

T-tests done for 100 genes. Bonferroni correction requires
us to multiply all P-values with 100.

Rank Gene P-value Rank Gene P-value ...

1 GENE84X 0.00037 13 GENE6X 0.02083

2 GENE73X 0.00431 14 GENE71X 0.02401

3 GENE48X 0.00544 15 GENE49X 0.02463

4 GENE1X 0.00725 16 GENE38X 0.02751

5 GENE81X 0.00769 17 GENE46X 0.02804

6 GENE91X 0.00793 18 GENE75X 0.02892

7 GENE96X 0.00803 19 GENE36X 0.04072

8 GENE22X 0.00907 20 GENE83X 0.04519

9 GENE95X 0.00977 21 GENE8X 0.04608

10 GENE58X 0.01734 22 GENE21X 0.05213

11 GENE77X 0.01911 23 GENE78X 0.06940

12 GENE33X 0.01974 24 GENE16X 0.07046

Only the smallest P-value survives Bonferroni correction.
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Bonferroni’s p-value correction

Bonferroni correction is the most well-known multiple
testing correction:

◮ Very simple.
◮ Always correct: no model assumptions, no

assumption of independence.
◮ Gives one new p-value for each test.
◮ Useable even if some hypotheses are false.
◮ If some tests produce false positives even after

correction, it will still be reliable on other tests (unless
correlated).

However, Bonferroni-correction is often conservative!
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Bonferroni’s p-value correction

Pearson correlation / P-value

sign_germB -

Germinal center B cell sign.

sign_lymph 0.16336 -

Lymph node signature 0.0113

sign_prolif -0.05530 -0.31586 -

Proliferation signature 0.3938 <.0001

BHP6 -0.08362 -0.02660 0.14079 -

BMP6 0.1967 0.6818 0.0292

MHC 0.17837 0.15082 -0.13411 0.08650 -

MHC class II signature 0.0056 0.0194 0.0379 0.1817

Only one p-value would survive Bonferroni correction.

However, getting P<0.05 for 5 of the remaining 9
correlations seems unlikely to happen by chance.

In this case, Bonferroni correction is quite conservative.
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Large scale T-testing

Microarrays now contain more than 40.000 probes: Too
many to test them one by one and hope that they can
survive Bonferroni correction.

Assume α = 0.05, N = 40000

H i
0 : gene i is not differentially expressed, i = 1, . . . 40000.

Reject H i
0 if pi · 40000 ≤ 0.05

i.e. if pi ≤ 0.00000025.

The original p-values must be very small in order to reject.
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The problem of conservative corrections

There are two problems with conservative correction:

1. Need very small p-value to reject H0.

2. The power of the test is low.
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Alternative p-value corrections

Several (less conservative) methods exist.
Two groups of methods:

◮ Methods that control the family-wise error rate
(FWER).

◮ Methods that control the false discovery rate (FDR).



Multiple testing

C.C. Günther

Outline

Hypothesis testing

Multiple testing

P-value correction

Multiple
comparisons

Alternative p-value corrections

Possible outcomes from m hypothesis tests:

No. true No. false Total
No. accepted U T m − R
No. rejected V S R
Total m0 m − m0 m

V : no. of type I errors (false positives)
T : no. of type II errors (false negatives)
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Family-wise error rate (FWER)

◮ The probability of at least one type I error
◮ FWER = P(V ≥ 1)

◮ Control FWER at a level α.
◮ Procedures that adjust the p-values separately.

◮ Single step procedures.
◮ More powerful procedures adjust sequentially, from

the smallest to the largest, or vice versa.
◮ Step-down and step-up methods

◮ The Bonferroni correction controls the FWER.
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Methods that control the FWER

◮ Bonferroni
◮ Sidak
◮ Bonferroni–Holm
◮ Westfall & Young
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Sidak correction

Assumes independent tests.

The adjusted p-value is found from the formula

p̃i = 1 − (1 − pi)
1/n

where pi is the unadjusted p-value and n is the number of
tests.

Very similar to the Bonferroni correction, very
conservative.
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Bonferroni-Holm

Step-down procedure, adjust p-values sequentially.

Order the k p-values, let p(1) be the smallest, p(2) the
second smallest and so on.

If p(1) < α/k , reject H0,1 and continue...

If p(2) < α/(k + 1 − 2) = α/(k − 1), reject H0,2

and so on...

until the hypothesis cannot be rejected.
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Bonferroni-Holm

The Bonferroni-Holm adjusted p-values p̃ are then given
by

p̃1 = k · p1

p̃j = max((k − j + 1) · pj , p̃j−1), 2 ≤ j ≤ k

Adjusted p-values greater than 1 are set to 1.
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Example: Bonferroni-Holm

Rank P-value Corrected P-value

1 0.00082 * 19 = 0.01558 *

2 0.00143 * 18 = 0.02574 *

3 0.00171 * 17 = 0.02907 *

4 0.00242 * 16 = 0.03872 *

5 0.00538 * 15 = 0.08070

6 0.00905 * 14 = 0.12670

7 0.01241 * 13 = 0.16133

8 0.03512 * 12 = 0.42144

9 0.04366 * 11 = 0.48026

10 0.07431 * 10 = 0.74311

11 0.14253 * 9 1.00000

12 0.15675 * 8 1.00000

13 0.21415 * 7 1.00000

14 0.25134 * 6 1.00000

15 0.41526 * 5 1.00000

16 0.46761 * 4 1.00000

17 0.57738 * 3 1.00000

18 0.75464 * 2 1.00000

19 0.89514 * 1 1.00000

Bonferroni-Holm p-value corresponds to removing tests
as they are found to be significant and perform Bonferroni
correction on the remaining.
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Example: Bonferroni-Holm

Rank P-value Corrected P-value

1 0.00082 * 19 = 0.01558 *

2 0.00143 * 18 = 0.02574 *

3 0.00171 * 17 = 0.02907 *

4 0.00242 * 16 = 0.03872 *

5 0.00538 * 15 = 0.08070

6 0.00905 * 14 = 0.12670

7 0.01241 * 13 = 0.16133

8 0.03512 * 12 = 0.42144

9 0.04366 * 11 = 0.48026

10 0.07431 * 10 = 0.74311

11 0.14253 * 9 1.00000

12 0.15675 * 8 1.00000

13 0.21415 * 7 1.00000

14 0.25134 * 6 1.00000

15 0.41526 * 5 1.00000

16 0.46761 * 4 1.00000

17 0.57738 * 3 1.00000

18 0.75464 * 2 1.00000

19 0.89514 * 1 1.00000

Bonferroni-Holm p-value corresponds to removing tests
as they are found to be significant and perform Bonferroni
correction on the remaining.
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Permutation tests
Statistical technique to use when distribution is unknown.

Example: Gene set measurements for patient and control
group.

For each gene i = 1, . . . , n, a test statistic ti is calculated.

Assume |t1| ≥ |t2| ≥ . . . ≥ |tn|.

Permute the ’patient’ and ’control’ labels ⇒ new dataset.

Calculate new t∗i ,b for the permuted sample.

Repeat B times, B is large number.

The t∗i ,b, b = 1, . . . , B now constitute a distribution for ti
under the null hypothesis.

The p-value of ti can be calculated as

pi =
number of permutations with |t∗i,b| ≥ |ti |

number of permutations B
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Permutation tests

The Westfall and Young step-down correction calculates
adjusted p-values directly through permutation.

These p-values take correlations between the tests into
account.

p̃i =
number of permutations with ui ,b ≥ |ti |

number of permutations

where un,b = |t∗n,b|

ui ,b = maxl=i ,...,n(ui+1,b, |t∗l ,b|), i = n − 1, . . . , 1

Disadvantage: Computer intensive method.
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Alternative p-value corrections

Possible outcomes from m hypotheses tests:

No. true No. false Total
No. accepted U T m − R
No. rejected V S R
Total m0 m − m0 m

V : no. of type I errors (false positives)
T : no. of type II errors (false negatives)
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False discovery rate (FDR)

◮ The expected proportion of false positives among the
rejected hypotheses.

◮ FDR=E[V/R|R > 0]·P(R > 0)

◮ Example: If 100 null hypotheses are rejected, with an
FDR of 5%, 5 of them will be false positives.

◮ Various procedures
◮ The Benjamini-Hochberg procedure
◮ Other versions
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Controlling the false discovery rate

The Benjamini-Hochberg procedure

Assumes independent p-values.

Let p(1), . . . , p(m) be the ordered p-values p1, . . . pm.

Start with p(m). Reject H0,m if p(m) ≤ α.

For the remaining p-values:

Reject H0,i if p̃(i) ≤ α

where p̃(i) = mink∈{i ,...,n}
m·p(k)

k .

Other variations exist.
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Simple example

The Benjamini-Hochberg procedure

Assume the unadjusted p-values are 0.007, 0.02, 0.4,
0.5.

The adjusted p-values are then p̃(i) = mink∈{i ,...,n}
m·p(k)

k :

p̃(4) = 0.50

p̃(3) = 4 · 0.4/3 = 0.53 > p̃(4) ⇒ p̃(3) = 4 · 0.5/4 = 0.50

p̃(2) = 4 · 0.02/2 = 0.04

p̃(1) = 4 · 0.007/1 = 0.028
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Example: Adjusting to control the FDR

Rank P-value FDR (5%)

1 0.00082 * 19 / 3 = 0.01083

2 0.00143 * 19 / 3 = 0.01083

3 0.00171 * 19 / 3 = 0.01083

4 0.00242 * 19 / 4 = 0.01150

5 0.00538 * 19 / 5 = 0.02044

6 0.00905 * 19 / 6 = 0.02867

7 0.01241 * 19 / 7 = 0.03368

8 0.03512 * 19 / 8 = 0.08341

9 0.04366 * 19 / 9 = 0.09217

10 0.07431 * 19 / 10 = 0.014119

11 0.14253 * 19 / 11 = 0.024619

12 0.15675 * 19 / 12 = 0.24819

13 0.21415 * 19 / 13 = 0.31299

14 0.25134 * 19 / 14 = 0.34110

15 0.41526 * 19 / 15 = 0.52600

16 0.46761 * 19 / 16 = 0.55529

17 0.57738 * 19 / 17 = 0.64531

18 0.75464 * 19 / 18 = 0.79656

19 0.89514 * 19 / 19 = 0.89514
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Example: Adjusting to control the FDR

Rank P-value FDR (5%)

1 0.00082 * 19 / 3 = 0.01083

2 0.00143 * 19 / 3 = 0.01083

3 0.00171 * 19 / 3 = 0.01083

4 0.00242 * 19 / 4 = 0.01150

5 0.00538 * 19 / 5 = 0.02044

6 0.00905 * 19 / 6 = 0.02867

7 0.01241 * 19 / 7 = 0.03368

8 0.03512 * 19 / 8 = 0.08341

9 0.04366 * 19 / 9 = 0.09217

10 0.07431 * 19 / 10 = 0.014119

11 0.14253 * 19 / 11 = 0.024619

12 0.15675 * 19 / 12 = 0.24819

13 0.21415 * 19 / 13 = 0.31299

14 0.25134 * 19 / 14 = 0.34110

15 0.41526 * 19 / 15 = 0.52600

16 0.46761 * 19 / 16 = 0.55529

17 0.57738 * 19 / 17 = 0.64531

18 0.75464 * 19 / 18 = 0.79656

19 0.89514 * 19 / 19 = 0.89514
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The Benjamini-Hochberg approach

◮ Controls the FDR.
◮ Assume independent p-values.
◮ Commonly used.
◮ Applies to a set of genes, not to individual genes.
◮ Does not tell you which p-values are false positives,

only how many that are.
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Correction of p-values in R

Function p.adjust is easy to use.

p.adjust(p, method = p.adjust.methods)

Input:

◮ Vector of p-values.
◮ Method is e.g. "holm", "bonferroni", "BH".
◮ Returns the adjusted p-values.
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Correction of p-values in R

Many BioConductor packages return corrected p-values
themselves.

Example: The ’limma’ package by Smyth et al.

Tests for differential expression between groups.

The function topTable returns a table of top-ranked
genes with unadjusted and adjusted p-values. Default
correction method is Benjamini-Hochberg.
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Another approach to multiple testing

Ideally, one should perform one test only, and decide on
the test prior to analysing the data.

In reality, data is scarce, and one wants to perform more
analyses, get more results and test more hypotheses.

One compromise is to divide analyses into two parts:

Hypothesis testing: As rigorous as can be done! Want
reliable conclusions.

Hypothesis generating: Less rigorous, allowing data
mining, multiple testing, etc. Conclusions
are not expected to be reliable in
themselves, but give good ideas/candidates
for further research.
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Another approach to multiple testing

Decide whether you want to control the FWER or the
FDR.

Example microarrays:

◮ Are you most afraid of having gene on your
significant list that should not have been there.

◮ Choose FWER.
◮ Are you most afraid of missing out on interesting

genes.
◮ Choose FDR.
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Another approach to multiple testing

A summary of the methods:

Figure from Multiple Testing Corrections, Agilent Technologies
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Multiple comparisons

One special case of multiple testing is pairwise
comparisons of groups.

Example: A doctor is comparing 6 different treatments to
find which reduces blood pressure the most by giving
each treatment to 10 different patients.

Can use ANOVA (Analysis of Variance) to check if there
is any variation between the treatments, and t-tests to
compare each pair of treatments. There are 15 pairs, so
p-values need to correct for multiple testing.
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Analysis of Variance

Let µi be the expected mean blood pressure for patients
receiving treatment i , i = 1, . . . 6.

We want to test whether all the means are equal.

If they are not, then some of the variability between
observations may be due to the different treatments.

The overall ANOVA test only tells us whether at least one
treatment differs from the others, not which treatment
does.
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Multiple comparisons

ANOVA testing

Step 1 : Test if there is any variation between the
treatments.

H∗
0 : All treatments have the same mean, µ1 = . . . = µ6.

vs

H∗
1 : At least one treatment has a different mean.

Step 2 : If H∗
0 is rejected, then for each pair of treatments i

and j , we test the null hypothesis

H0,ij : Treatment i and j have the same mean, µi = µj .

vs

H1,ij : Treatment i and j do not have the same mean,
µi 6= µj .
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Multiple comparisons

1 2 3 4 5 6

−
1

0
1

2
3

4

group

y

Example output from ANOVA in R:

group

1 2 3 4 5 6

2.358 3.543 2.646 2.885 1.327 1.042

Df Sum Sq Mean Sq F value Pr(>F)

group 5 45.394 9.0788 12.222 6.098e-08 ***

Residuals 54 40.112 0.7428

–-

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Multiple comparisons

The null hypothesis for each pair of treatments can be
tested using a t-test.

However, we need to correct for multiple testing.

Two situations:

◮ All-against-all comparisons
◮ Tukey

◮ One-against-all comparisons
◮ Dunnet
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All-against-all comparisons

Tukey’s procedure

◮ Adjustment of p-values for all-against-all T-tests.
◮ Controls the FWER.
◮ When the sample sizes are equal, the control is

exact.
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All-against-all comparisons

Output from R (using the TukeyHSD function)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = y ~ group)

$group

diff lwr upr p adj

2-1 1.1846806 0.04591626 2.3234450 0.0369410

3-1 0.2884340 -0.85033032 1.4271984 0.9747363

4-1 0.5272223 -0.61154207 1.6659867 0.7456503

5-1 -1.0312727 -2.17003704 0.1074917 0.0970729

6-1 -1.3157768 -2.45454114 -0.1770124 0.0147094

3-2 -0.8962466 -2.03501095 0.2425178 0.2020111

4-2 -0.6574583 -1.79622270 0.4813060 0.5341050

5-2 -2.2159533 -3.35471767 -1.0771889 0.0000062

6-2 -2.5004574 -3.63922177 -1.3616930 0.0000004

4-3 0.2387883 -0.89997611 1.3775526 0.9891193

5-3 -1.3197067 -2.45847108 -0.1809424 0.0142918

6-3 -1.6042108 -2.74297518 -0.4654465 0.0015222

5-4 -1.5584950 -2.69725934 -0.4197306 0.0022220

6-4 -1.8429991 -2.98176343 -0.7042347 0.0001932

6-5 -0.2845041 -1.42326846 0.8542603 0.9762048
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One-against-all comparisons

Dunnett’s test:

◮ Adjustment of p-values for one-against-all T-tests.
◮ One group is e.g. placebo or the standard treatment

to which the others should be compared.
◮ Controls the FWER at level α.
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Output from R using the glht function in the multcomp

package.

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = y ~ group)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

2 - 1 == 0 1.1847 0.3854 3.074 0.01438 *

3 - 1 == 0 0.2884 0.3854 0.748 0.91262

4 - 1 == 0 0.5272 0.3854 1.368 0.51708

5 - 1 == 0 -1.0313 0.3854 -2.676 0.04042 *

6 - 1 == 0 -1.3158 0.3854 -3.414 0.00548 **

–-

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported – single-step method)
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Summary

◮ Always try to decide what you want to test and how
before looking at the results.

◮ Always keep multiple testing in mind when you are
testing more than one hypothesis.

◮ When testing many hypotheses, it is usually
desirable to control the FDR.

◮ For a smaller number of hypotheses, controlling the
FWER may be the right choice.
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