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Characteristics of a real quantitative genetics theory

e Capable of linking genes, phenotypes and population-level
genetic phenomena through a causal understanding of the GP

map

Mathematical models describing how phenotypes arise from lower
level processes
Models have an articulated relation to genotypes

Populations of dynamic systems connected to genetic maps and
sequence information




Genetic variation - some problems

e Dominance (2 690 000) Modularity

e Epistasis (750 000) Evolvability

e Penetrance (477 000) Developmental

e G x P interaction (386 000) constraints

o Expressivity (318 000) Developmental
dissociability

e Heterosis (286 000)

e Phenotypic plasticity (184 000) Morphological

e Canalization (31 800)

Biological versatility

Left column: GP map phenomena we can deal with now in some sense

Right column: GP map phenomena that are still very challenging to deal with in
mechanistic terms

(Numbers are Google hits...)



The GP map as a conceptual meeting place
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...a mapping from genotype space to phenotype space.




Pleiotropy
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Often, a single gene affects multiple traits, a phenomenon called
pleiotropy. [point along axes phi1 and phi2].




aa Genotype space

In this illustration, the action of gene a with respect to phenotype phit is
additive...




aa Genotype space

...while its effect on phenotype phi2 is nonadditive, the heterozygote being
closer to the phenotype of (little a, little a).




¢, Phenotype space

G-P map

aa Genotype space

Many phenotypes are affected by several genes...
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¢, Phenotype space
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Genotype space
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Here, the effect of a single copy of little-b is independent of the genotype
at locus a, ...
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...but the effect of another "little b" depends on the genetic background, a
phenomenon called epistasis.

Functional epistasis is here used as a common term for describing
situations where the phenotypic effect of a genetic substitution (on one or
multiple loci) depends on the genetic background, i.e. on the state of other
loci in the genotype
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¢, Phenotype space

Genotype space
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P,

P, Parameter space

Phenotype space

aa Genotype space

The mapping from genotypes to phenotypes can be decomposed into
multiple transformations. The parameters of a physiological model can
themselves be viewed as phenotypes, so that there is a mapping from
genotype space to parameter space to phenotype space. Each of these
can be further decomposed into layers of submodels.
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Phenotype space
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The mapping from genotype to parameters to phenotypes can be
complex...

Introduce the causally cohesive genotype-phenotype model (cGP)

cohesive: having the power of cohering, ie the power of sticking
together
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The GP map in evolution

P: Phenotype space

R. C. Lewontin (1974):
The genetic basis of
evolutionary change

G: Genotype space

*The figure is a simplified version of the first figure in Lewontins excellent book
from 1974

» Can be used to illustrate the current state of genetics theory as well as the
genotype-phenotype map concept

* Describe the figure:
Treat genotypes and phenotypes as state variables
Study the transformations

m T,:the genotype to phenotype
transition

= T,: natural selection, migration and
mating

= T,: genotypes underlying selected
phenotypes

= T,: the laws of recombination and
segregation

 Population genetics theory is framed in genetic terms and make a caricature of
the T1 mapping

 Quantitative genetics theory is framed in phenotypic terms and make a

caricature of the T1 mapping 17
e Mark the T1 maoonina and explain the GP mabp.



Bridging the gap: Modelling the causal chain
from genes to phenotypes to population-level phenomena

e What Cigene is

Bridging the gap: Overall goal

Multilevel cGP models

— The Physiome project
— Multilevel heart model

The single heart cell: A miniature multiscale system
— Physiology and genetic basis

— Mathematical model

— Phenotypes

— "Genotypic" parameter variation

Preliminary results

— Simulated phenotypic variation

— Univariate and multivariate phenotypic distributions

— Univariate and multivariate mathematical and statistical analyses
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Context

e CIGENE, Centre for integrative genetics
— Seek deep causal understanding of complex genetic traits
— Systems-oriented computational biology
— SNP genotyping platform
e Bridging the genotype-phenotype gap
— eVITA project (NFR/RCN)
— Small-scale detail: sequence data, molecular physiology

— Large-scale patterns: statistical quantitative genetics and
epidemiology

— Little connection thus far
e Mammalian heart model:

— causally cohesive genotype-phenotype (cGP) model

— genetic — phenotypic variation at multiple levels
(e.g. ion channel, cell, tissue, organ)

e Link to the IUPS Physiome Project
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What we do

e Arne Gjuvsland, postdoc

— Theoretical focus on genetics:
G-P maps, cGP models vs. statistical quantitative genetics.

— Study systems: Physiome heart model, yeast cell models
e Jon Olav Vik, postdoc

— Analyzing multivariate data and behaviour of complex biological systems
and cGP models. Main responsibility for the heart model work package.

e @yvind Nordbg, PhD student
— Conceptual focus on interface and transitions between multiple scales,

and associated mathematical, numerical, and biological modelling challenges.

— Continuum mechanics, biophysics. openCMISS software.
e Mary MacLachlan, postdoc

— Modeling the ageing heart.
e Yunpeng Wang, PhD student

— Using cGP models to resolve unaccounted-for heritability of complex disease.

e Stig W. Omholt, professor, group leader
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Bridging the gap: Overall goal
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Big words

e Bridging the gap:
disclosure, understanding and exploitation of the genotype-
phenotype map

e In a population setting establish a computational pijpeline for
describing, understanding and exploiting the link between
genetic concepts and methodologies and the most advanced
synthetic phenotype in the world, the mammalian heart model.

e Analyze G-P map in existing single-cell models
of mouse heart muscle cells

e Whole mouse heart modelling and analysis

e Analytical exercises related to model condensation and
integration
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Multilevel cGP models

e The Physiome project

e Multilevel heart model
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[UPS Physiome Project
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Hunter, PJ and Borg, TK. Integration from proteins to organs: The Physiome Project. Nature Reviews Molec & Cell
Biol. 4:237-243,2003

Forced to get the dimensions right.
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The Challenge: spatial and temporal scales

Space person
10° electrical length scale of cardiac tissue
cardiac sarcomere spacing
pore diameter in a membrane protein
Time human lifetime
1015 protein turnover
digest food
heart beat
ion channel HH gating
Brownian motion
The diversity of experimental models
structural biology
functional genomics
physiology
clinical MRI, CT, etc

Requires a hierarchy of inter-related models

gene reg. pathway MD/CG stochastic
networks models models models

PDEs

(continuum models)
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Physiome MLs, tools & databases

Organism (7)

OrganSystem(6)

drgan (5)

Tissue (4)

PIR
SwissProt

Circulatory system
Respiratory system
Musculo-skeletal system
Skin (integument)
Digestive system

Central nervous system
Endocrine system
Lymphoid system

Male reproductive system
Female reproductive system
Special sense organs

Muscle tissue
Nerve tissue
Connective tissue
Epithelial tissue
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Organ system Physiome Projects

Cardiovascular system
Respiratory system
Musculo-skeletal system
Digestive system

Skin (integument)

Urinary system

Lymphoid system

Female reproductive system
Special sense organs
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The Heart Physiome Project

cell-cell
connections

3D cell
proteins
| A

tissue

/== transcription
& translation —__ §

Hunter, PJ and Borg, TK. Integration from proteins to organs: The Physiome Project. Nature Reviews Molec & Cell
Biol. 4:237-243,2003

I W !‘w(ll
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ventricular pressure (mm Hg)
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Phenotype measures

Cell phenotype
Protein pathways
Electrophysiology
pH control

Signal transduction

Spatial variation
Fibre types
Fibre orientation

Tissue phenotype |Continuum models

Mechanics

Electrical activation
Ventricular blood flow
Coronary flow

Modes of deformation

Whole heart phenotype

Measures of arrhythmia |Heart rate

Q-T interval
End diastolic volume
Left ventricular pressure

EDV = End-diastolic volume
ESV = End-systolic volume

A —= B: Passive filling and atrial contraction
B —= C: Isovolumic contraction

C—= D: Ejection of blood into aorta

D —= A: Isovolumic relaxation

Calcium transport Energetics
Myofilament mechanics
' ———— Stroke volume ——
| Aorticvalve  ventricular ejection QRs
=1 closes; 3 ECG Complex
‘ ESV L Aortic valve
| opens R
1 C/
Isovolumic ' cg':i?ac 'CS:(:"O:LT:(\
ré
relaxation cycle
= Mitral valve 5 ST i
. PR egmen
Mitral closes; Segment T
valve | EDV P
opens.__|Ventricular diastole  filing ‘/ PN
IR e R R
e ' 8
(] 65 100 135 Q
Left ventricular volume (mL) PR Interval s

| QT Interval
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Phenotypes from cell to organ

Examples:

e Whole heart
— Electrocardiogram
— Arrhythmias

a R

e Tissue
— Activation propagation speed

— Amplification or containment of
beginning arrhythmia b Natl

e Cell
— Action potential

— Calcium dynamics
— APD restitution
e Ion channel
— Maximum conductance
— Voltage dependence

Figure: Clancy CE, Kass RS (2002) Defective cardiac ion channels: from mutations to clinical syndromes.
J Clin Invest 110:1075-1077 http://dx.doi.org/10.1172/JC10216945
Screenshot: http://thevirtualheart.org/vf.html

The cellular action potential underlies important organ-level phenotypes such as
the electrocardiogram. The heartbeat starts in the atria (mfirst upstroke), causing a
dip in the ECG. The so-called QRS complex follows as ventricular cells activate
(msecond upstroke). Repolarization (m downstroke and T wave) marks the end of
the action potential and the heartbeat.

A mutation which mprolongs the action potential may cause m"long QT
syndrome", increasing the risk of lethal arrhythmias. This is not always the case,
however. Whether cellular anomalies propagate to the whole-heart level depends
on the spatial dynamics of electrical activation at the tissue level. Next year we
will study the genotype-phenotype map in detailed models of cell tissue and the
whole-heart. Finally, the penetrance of long QT seems to depend on both modifier
genes and environmental effects.

Figure 1. Electrical gradients in the myocardium can be detected on the body
surface ECG. (a) An illustrative example of a single cardiac cycle detected as
spatial and temporal electrical gradients on the ECG. The P wave is generated by
the spread of excitation through the atria. The QRS complex represents
ventricular activation and is followed by the T wave reflecting ventricular
repolarization gradients. (b) Schematic representation of cellular electrical
activity underlying the ECG (see text for details). Where downward arrows
represent inward current and upward arrows represent outward current.




The single heart cell: A miniature multiscale system

e Model: Li & Smith in prep (derived from Bondarenko et al. 2004)
— 36 state variables (ordinary differential equations), 76 parameters

— Fitted and validated against several experiments and cardiomyocyte
types

— Features in common with most single-cell models
e Similar challenges as whole-heart work

— Summarize relevant features of complex phenotype

— Statistical pattern vs actual mechanism

— Sensitivity of phenotype to genotypic variation

— Multivariate analyses: epistasis, pleiotropy, penetrance, expressivity
e Validate analysis methods
e Miniature multiscale

— ion channels to ion concentrations to action potential

Realistic single-cell models can be quite complex genotype-phenotype maps in
themselves.

The parallels to our future work on the whole heart model in openCMISS is that
we have a high dimensional phenotype that we need to summarize into something
of clinical interest. There is also the duality of documenting the statistical pattern
versus identifying actual mechanism. Two of the phenomena we have started
looking at, are the effects of genotypic variation at one locus on the phenotype,
and how such effects may modify the effect of variation at other loci. The latter
phenomenon is called epistasis. Other phenomena of interest include pleiotropy,
meaning that one gene affects several traits; penetrance, meaning that a genetic
defect may not always show; and expressivity, meaning the degree of continuous
variability in the effect of the genetic difference. This is a good opportunity to
validate the analysis methods we are going to be using later, while at the same
time producing real biological insights. It will also bolster our confidence when
using these methods on whole heart simulations. Perhaps single cell models can
even illustrate some features of multiscale systems. Their phenotypes certainly
form the interface up to the tissue level.
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The single heart cell: A miniature multiscale system

e Physiology and genetic basis
e Mathematical model

e Phenotypes

e "Genotypic" parameter variation

32



Model and parameters

ACTION POTENTIAL MODEL OF MOUSE VENTRIC
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(Figure 1 from Bondarenko et al. 2004,
http://dx.doi.org/10.1152/ajpheart.00185.2003 )

We have been studying a fairly detailed model of a mouse heart cell. It describes
the flow of ions across the cell membrane and between different compartments of
the cell. This flow of ions achieves the two main function of the cell: To contract
the heart muscle, and to propagate an electrical signal.

The cell "charges its battery" by moving many positive ions out of the cell fluid.
Once it is charged, an electrical impulse will cause the cell to "fire", as ion
channels open to allow rapid depolarization, producing a signal that propagates to
neighbouring cells.

Muscle contraction, on the other hand, is triggered by the release of calcium into
the cytosol. Initially, calcium is sequestered into special compartments, until
depolarization triggers its release.

Now, I'm no expert on this, but I'll give it my best shot. The Bondarenko model
describes the flow of ions in and out of the cell, and the resulting difference in
electrical potential between the inside and the outside of the cell. This is called
the transmembrane potential, and its time trajectory is what's called the action
potential of the cell.

The major ions in the model are calcium, sodium, and potassium. Ion channels
are specialized proteins that help or hinder the passage of ions across the cell

membrane, opening or closing in response to conditions such as ion 33



Small-scale complexity:
electrophysiology of a heart cell

voltage
A human mouse
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Complex gene interactions occur even within a single cell. Heart cells generate electrical
impulses by varying the permeability of the mcell membrane to msodium, potassium and
calcium (Na+, K+, Ca2+) ions. Special proteins called mion channels open and close in
response to changes in voltage or ion concentrations, determining whether ions are
permitted to move along electrical or osmotic gradients. The complex interplay and
timing of the various ion currents determine the time-course of the transmembrane
voltage. This phenotype is so important that it has its own name: mthe action potential.

This is a compact example of multilevel phenotypes arising from complex gene
interaction. P mGenes code for different subunits which combine mto form ion channels.
Mutations may affect the conductance of ion channels, but also their opening and closing
speed or voltage dependence. Multiple channels contribute to the mconcentration of each
ion species, which in turn contribute to the mtransmembrane voltage. » The resulting

electrical impulse is the cell's primary interface to the surrounding tissue. This phenotype,

the time-course of the transmembrane potential, is so important that it has its own name:
the maction potential.

Figure 1 from Bondarenko VE, Szigeti GP, Bett GCL, Kim S-J, Rasmusson RL (2004)
Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart
Circ Physiol 287(3):H1378-1403 http://dx.doi.org/10.1152/ajpheart.00185.2003

Figure 1 from Nerbonne JM (2004) Studying cardiac arrhythmias in the mouse-a
reasonable model for probing mechanisms? Trends Cardiovasc Med 14(3):83-93
http://dx.doi.org/10.1016/j.tcm.2003.12.006
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The time-course of the transmembrane voltage is called the action potential. The
initial stimulus triggers rapid depolarization of the cell, and this signal is what
propagates to neighbouring cells.

However, depolarization also triggers calcium release into the cytosol. This
process is slower, as the muscle fibers need time to react. Meanwhile, the cell
repolarizes, getting ready for the next action potential.

The action potential and calcium transient result from the combined action of
many different ion channels, each coded for by specific genes.
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Bondarenko model: ion channel Markov models

Fig. 2. State diagram of the Markov model for the Na* channel
Cna1, Cna2, and Cnaz are closed states; O, is the open state:
IFna is the fast inactivated state: I1na and I2x. are the interme-
diate inactivated states: and ICxa> and ICxas are the closed-
inactivation states (22). « and 3 are the transition rates between
the states, as given in the APPENDIX.

e closed states: O 1s th e
stants « and 3 are
dent. Kper and Kper

sitive rate constants.

The rate
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The major state variables in the model are the transmembrane potential, the ion
concentrations, and the state of the ion channels. Ion channels are often modeled
as being in one of several possible states, one of which is "open". A Markov
chain model is a representation of the proportion of channels in each of these
states and the transition rates between them. All of this may be an accurate
representation of the number of subunits in the ion channel. But more often, it is
just something to imitate the inertia and behaviour of the cannel proteins on
average.




Ion channel genes

Table 1|lon-ch | genes iated with cardiac arrhythmia
HERG™** Romano-Ward (autosomal dominant) long QT syndrome  hERG (KV11.1) Ie Loss of function (decreased current)
(KCNH2) Short QT syndrome Gain of function (impaired inactivation)
KCNQP4#! Romano-Ward and Jervell and Lange-Nielsen (autosomal  KvLQT1(KV71) a Ixs Loss of function (decreased current)
recessive) long QT syndromes
Short QT syndrome Gain of function (channels remain open)
KCNET® Romano-Ward & Jervell and Lange-Nielsen long QT minkK Ixs Loss of function (decreased current)
syndromes
KCNE2® Romano-Ward long QT syndromes MiRP1 B Ix, Loss of function (decreased current)
KCNJ2'*® Andersen-Tawil sundrama Kir21la L.. 1oss of finction (decreased ciirrent)
Short a -
Voltage
SCNSAS38488 Rom: sensor Pore
Brugi

CACNAIC” Timo
RYR2% Cater

Alternate gene or subunit nan

Several hundred known ion-channel mutations are associated with cardiac
arrhythmia, and their function is beginning to be well understood. This (lower
right) is looking out through an ion channel consisting of four identical subunits.
Each subunit has a voltage-sensing part with positively charged amino acid
residues. The sensor slides across the cell membrane in response to voltage
changes, pushing on a part of the pore to close the channel.



Bondarenko model: parameters and equations

ACTION POTENTIAL MODEL OF MOUSE VENTRICULAR MYOCYTES H1397
Table 3. Extracellular ion concentrations Table 5. L-type Ca’" channel parameters
Parameter Definition Value, M Parameter Definition Value
Extracellula concent 5,400 Gea Specific maximum conductivity for L-type Ca®*  0.1729 mS/uF
Extracellular Na* concentration 140,000 channel

* concentration 1800  Ecu Reversal potential for L-type Ca®* channel 63.0 mV

Kpemsx  Maximum time constant for Ca® *-induced 0.23324 ms ™!
inactivation
Kyt Half-saturation constant for Ca®*-induced 20.0 pM
) inactivation
Agp € Ko Voltage-insensitive rate constant for inactivation 0.0005 ms '
~ Iy 1 | (43)  feume Normalization constant for L-type Ca®* current 7.0 pA/pF
d[Ca’ )
Bysx Ve = Jiatk A9 o = kil Ca®], ((HTRPN],, — [HTRPNCa)) — kizp, [HTRPN
. + kipe[Ca™* ] (LTRPN],, — [LTRPNCa)) — _TRPNCa
A e gy Ve Vo o KimelCa?*] (LTRPN),, — [LTRPNCa]) — kippo [LTRE :(/4‘]
= = wp ~ Vil , Ty P, )
dr » W Ver Vim g
. dPyx , leu ;
[, [CMDNL K™ | o= 0P — 01 (A15)
B, = 1+ — e (A6) g ol
" (KM +[Ca
Calcium buffering.
[, 4 LCMDN1L. 7y d[LTRPNCa
Bo =1+ ko 3 (ca 1) (47) dILTRPNCa] KimelCa®*), ((ILTRPN],, — [LTRPNCal)
dr (A416)
KS™ ~ ki [LTRPNC
By =1 (8 . .
1=)) d[HTRPNCa] . . -
o g = Kiape[Ca™ ], (HTRPN]., — [HTRPNCa))
Calcium fluxes g (A17)
Jua = (Poy + P [Ca T — [Ca" TP (49) =heIREHCAl
o e Ryanodine receptors:
[Ca™ Jsk = [Ca®* Tk
Jym—n TR A10) dp,, ...
Tu —= = k[Ca’" T,Pc, — kP,
dr (A18)
Jrger (Al11) -k [Ca** 12Po, + k5P — kP, + K Py
Tter
' Py = 1= (P + Poy + Poo) (419)
Jiak = vo([Ca®* a’*]) (412) dP..
K [Ce* 1 Po, — k; Poa (A20)
J, v, (A13)
- dPe .
kPoy — kP (A21) 38

This is just part of the listing of the model parameters and equations of the
Bondarenko model.




Bondarenko model:
parameters and initial conditions

H1398 ACTION POTENTIAL MODEL OF MOUSE VENTRICULAR MYOCYTES
Table 7. Membrane current parameters dc,
— = 3aC, — 2BC; + 3BC; — 2aC, (A26)
Parameter Definition Value dr
Cm Specific membrane capacitance 1.0 pF/em? d(_‘ 2aC, — \ = i . 4 . \
m ! | 2aCy = 3BC, + 4BO — oCy + 0.01(4K ., Bl — a¥Cy)
F Faraday constant 96.5 C/mmol dr .
T Absolute temperature 298 K L i . (427)
R Ideal gas constant 8314 Jmol “K™! +0.002(4B1; — K Cy) +4BKin I — ¥K Cy
kNaca Scaling factor of Na*/Ca’* exchange 292.8 pA/pF
Kinna Na* half-saturation constant for Na*/Ca®* 87,500 pM Table 8. Initial conditions
exchange
Kin.ca “a*" half-saturation constant for Na*/Ca®* 1380 pM Parameter Definition Value
hange
Kt * exchange saturation factor at very 0.1 t Time 0.0 ms
negative potentials 4 Membrane potential 82.4202 mV
n Controls voltage dependence of Na*/Ca®* 035 [Ca*) Myoplasmic C concentration 0.115001 pM
exchange [Ca*])s Subspace SR Ca?* concentration 0.115001 pM
KR Maximum Na*/K™" exchange current 0.88 pA/pF [Ca* sk concentration 1299.50 pM
Kin.Nai Na* half-saturation constant for Na*/K* 21,000 uM [Ca® " Insr * concentration 1299.50 uM
exchange current [LTRPNCa] Concentration Ca** bound low-affinity 11.2684 uM
Km ko K" half-saturation constant for Na* /K" 1,500 pM troponin-binding sites
exchange current [HTRPNCa] Concentration Ca>* bound high-affinity 125.290 pM
L) M wum Ca®* pump current 1.0 pAfpk troponin-binding sites
Kmpcay  Ca®* half-saturation constant for Ca>* pump 0.5 pM o L-type Ca®* channel conducting state 0.930308x10'%
current Cy L-type channel closed state 0.999876
Gean Maximum background Ca®* current 0.000367 mS/p¥ C2 L-type C channel closed state 0.124216x10°*
conductance Cs L-type Ca’* channel closed state 0.578679x10~#
Gra Maximum fast Na* cument conductance 13.0 mS/pF Cq L-type channel closed state 0.119816x10°"2
Gnab Maximum background Na’* cument 0.0026 mS/pf L L-type channel inactivated state 0.497923 X10'#
conductance I L-type Ca®* channel inactivated state 0.345847x10° "3
Gkiof Maximum transient outward K* current 04067 mS/pF Is L-type Ca®* channel inactivated state 0.185106x10 "3
conductance (apex) Pcy Fraction of RyR channels in state P, 0.999817
Gkuo, f Maximum transient outward K™ current 0.0798 mS/pF Pc2 Fraction of RyR channels in state Pc; 0.167740X10*
conductance (septum) Por Fraction of RyR channels in state Po; 0.149102x10°*
Gks Maximum slow delayed-rectifier K* current  0.00575 mS/pF Po2 Fraction of RyR channels in state Po2 0.951726x10°1°
conductance Pryr RyR modulation factor 0.0
Gkios Maximum transient outward K* current 0.0 mS/pF Cray Closed state of fast Na™* channel 0.624646
conductance (apex) Crar Closed state of fast Na* channel 0.020752

This graph illustrates how we can summarize the action potential (the time
trajectory) in a few key numbers: the resting and peak potentials, and the time
required to get half way back down. The phenotype depends on parameter values,
as illustrated here for cells from two different parts of the heart. One is the apex
(the tip of the heart); the other is the septum (the dividing wall). Assuming that
specific loci code for specific parameters, we may simulate phenotypic variation
reflecting genetic variation, and the statistics on it. On the other hand, we can
detail the mechanism by which the statistical pattern arises.




"Genotypes" and Phenotypes

"Genotypic" variation

Maximum conductances of

"aa", "Aa", "AA" = 50%, 100%,

eight ion currents
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Many genetic analyses require that the high-dimensional phenotype of a cGP

model be summarized in a few key statistics, such as the action potential duration
to 90% repolarization. Similar measures are APD75, APD50, and APD25, as well
as the time to peak, and peak voltage.

(Maybe skip this: At the subcellular level, ion-channel phenotypes can be
described by total current during the action potential, or the timing and amplitude
of the peak and trough.)

The next slide shows the distribution of each of these phenotypes, for six and a
half thousand parameter sets resulting from "genetic" variation in eight
parameters.

(This model is based on the Bondarenko 2004 model with modifications to the
Cai dynamics. Specifically, the L-type Ca current, SERCA, NCX and Ryanodine
receptor have been fitted to experimental data from our collaborators, and
parameters for the background Ca current and PMCA have been adjusted
accordingly.)
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Phenotype characteristics of the action potential
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Many genetic analyses require that the high-dimensional phenotype of a cGP

model be summarized in a few key statistics, such as the action potential duration
to 90% repolarization. Similar measures are APD75, APD50, and APD25, as well
as the time to peak, and peak voltage.

(Maybe skip this: At the subcellular level, ion-channel phenotypes can be
described by total current during the action potential, or the timing and amplitude

of the peak and trough.)

The next slide shows the distribution of each of these phenotypes, for six and a
half thousand parameter sets resulting from "genetic" variation in eight

parameters.




Expectations/Hypotheses

Additive action for phenotypes relating mainly to a
single current, e.g. upstroke (peak amplitude, time
to peak) is mainly due to INa

Effects of one gene may change the playing field for
another:

—e.g. if gene A affects voltage or Ca?*, and
gene B codes for a voltage- or Ca?* -sensitive mechanism

Some very obvious ones

— SERCA is the Bondarenko model's only inflow
of Ca?* to the sarcoplasmic reticulum
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Epistasis, and measures thereof

* Basicidea: The genotype at one locus
modifies the effect of a gene substitution
at another locus (for a given phenotype).

* Depends on the choice of phenotype and how much alleles
vary.
* A kind of parameter interaction. Possible measures:

— Second derivatives: 0%(pheno)/[d(param i) O(param j)]

— Regression coefficients for interaction terms in statistical models,
for a given coding of genotypes. Appearance of epistasis depends
on coding and genotype frequencies.

— NOIA: "natural and orthogonal interactions". Can translate between
different genotype frequencies.
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Gene x Cell-type interaction

e Mutation SCN5at79>nsD causes ST elevation,
a symptom of Brugada syndrome.

e Alternating "coved dome" and loss of plateau
in epicardial cells, but not in midmyocardium (M cells)

e The affected ion channel is less important in M cells

/ ST SEGMENT
NORMAL ECG

) 1795insDM ——
= 50 1795inSD epi  me—
o0l
ST ELEVATION = 5 O
-100
CL=300ms

Clancy CE, Rudy Y (2002) Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes.
Circulation 105:1208-1213 http://dx.doi.org/10.1161/hc1002.105183
http://www.uptodate.com/online/content/image.do?imageKey=card_pix/st_patte.htm

The effect of a mutation may differ between cell types. This mutation is linked to
Brugada syndrome, which manifests as elevation of the ST segment of the ECG.
However, the action potential is roughly normal in mutant midmyocardial cells
(thin line), whereas epicardial cells show dramatic alternation between delayed
and near-absent plateau phases of the action potential. The reason is that the
affected ion channel is less expressed in M cells.

Figure 8. Effects of1795insD on transmural voltage gradients and APD. A, At fast
rates, mutation-induced changes in epicardial AP morphologies (thick line) cause
dispersion of plateau potentials and a voltage gradient (Vm, arrows) from
epicardial to M cell (thin line). This gradient will manifest on the ECG as ST-
segment elevation, indicative of Brugada syndrome. For coved-dome morphology
of the epicardial AP, Vm is reversed during phase 3 repolarization, which can
cause T-wave inversion on the ECG. B, At a slow rate (CL=850 ms), mutation
prolongs APD in M cells (thick line) compared with WT (thin line). Delay in
repolarization (APD60 ms) is reflected as QT prolongation on the ECG, a
hallmark of LQT syndrome.




Preliminary results

e Simulated phenotypic variation
e Univariate and multivariate phenotypic distributions

e Univariate and multivariate mathematical and statistical analyses
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Ion currents in humans and mice
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Different ion channels are responsible for different parts of the action potential.
The upstroke is mainly due to the sodium current, whereas various potassium
currents are important in repolarization.

Now, a mutation may change the biochemical properties of an ion channel. When
model parameters change, the phenotypes change too...
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...0ur aim to to understand how and why phenotypes vary in response to genetic
variation in low-level parameters.

For simplicity, we assume that eight "genes" code for one ion channel each. For
each gene, genotype "big A, little a" codes for the normal amount of ion channels,
whereas one homozygote has 50 percent less and the other has 50 percent more.
Variation in one gene then gives three different parameter scenarios; variation in
two genes gives nine scenarios; and so on with successive splitting in threes. For
example, the calcium transient shows a strong effect of a single gene (non-
additive, it seems), and minor effects of other genes.




Univariate phenotype distributions

Action potential phenotype distributions

20
Time (ms)

It is interesting to see how phenotypes differ in the number of underlying genes.
The time to 90% repolarization, called APD90, is a fairly polygenic trait, showing
quite continuous variation. In contrast, APD75 has a nine-modal distribution
suggesting two underlying genes. And the time-to-peak phenotype appears to be
governed largely by a single gene.

[The partly broken lines are empirical cumulative distribution functions, ECDF.
Areas show kernel density estimates. ]



Splitting 3x3x3...
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Baseline scenario| | , ,

CTDIttp

CTDI20

CTDIS0

APDpeak

APDttp

APD20

APD50

This is a scatterplot matrix with one panel for each pair of phenotypes. Currently,
we see the phenotypes for the baseline parameter scenario.

(APD90 = action potential duration to 90% repolarization. "ttp" = time to peak.

"peak" = peak value. CTDi = calcium transient duration phenotypes (the "i"means
in cytosol) analogous to APD.)



Adding varigtion in P_CaL - | - - .

CTDIttp

CTDI20

CTDIS0

APDpeak

APDttp

APD20

APD50

Varying parameter P_Cal (which sets the maximum of the L-type calcium
current) gives us three parameter scenarios. APDttp and APDpeak are not much
affected by this variation (since they occur earlier than the calcium transient),
whereas the other phenotypes do respond to this parameter variation.




Addingvarigtion in g_Na - | *. " .

CTDIttp

CTDI20

CTDIS0

APDpeak

APDfttp

APD90

APD50

Adding variation in another parameter, we get 3x3 = 9 parameter combinations.
Parameter g_Na sets the maximum of the sodium current, whose main role is in
the upstroke at the start of the action potential. There isn't much effect on CTD
phenotypes, but quite a bit on APD.




Adding varigtion ih vmup_init {SERCA) . = | * | croses

CTDlittp

CTDI20

CTDIS0

APDpeak

APDfttp

APD20

APDS0

Adding variation in another calcium current: SERCA, inflow to the calcium
storage compartments. The 3x3x3=27 parameter scenarios cluster into 3 blobs in
the APDttp vs APDpeak panel, 9 blobs for CTDipeak vs CTDittp, and 27 distinct

points in the upper left panels.
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Eventually, 378 = 6561 parameter scenarios appear as a fairly smooth distribution
for many phenotype pairs, although some phenotypes are clearly determined
mostly by one (APDpeak) or two (CTDipeak) of the selected parameters.




Phenotypic correlation
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Each panel shows the covariation between two phenotypes, resulting from the
simulated genotypic variation in model parameters. Each parameter set is one
point in each panel. Here the several thousand points are summarized as densities,
progressing from black to magenta.

We see how the added dimension helps account for the marginal distributions

[point along diagonal]. For instance, these two peaks [point to ttp] resolve into
three groups of points when we consider "peak voltage" and "time to peak" at

once.

These phenotypes show a strong negative correlation: A fast upstroke gives a tall
peak. We also see strong correlation between action potential duration for
successive percentages of repolarization [point to first off-diagonal]. However,
there is little correlation between the early and late phases [point to ttp vs
APDO0].

The next slide relates this multivariate phenotype to genes.
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This slide zooms in on one pair of phenotypes and shows how the clusters reflect
specific "genotypes". (The phenotype on the y axis is calcium transient duration
in the "dyadic subspace", which wasn't included on the previous slides. It serves
to illustrate the point, though.)

Upper left: uncolored points. Lower left: Points colored by value of SERCA.
Lower middle: Points colored by value of g_Na. Lower right: Separate panels for
each of the 9 combinations of SERCA x g_Na. Upper right: coloring by g_Kto_f
identifies the outlying blob in each panel.
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Genes to
phenotypes:

Other

Variance decomposition

g_ClCad—
g_ClCa a
g_Kto_fd—
g_Kto_fa- -
g_K1d-
g_K1a- - Proportion of variance
E g_KrdT 0
GE) g Kra-— 0.2
g k_NaCa d- 0.4
0 k_NaCaa- . 0.6

vmup_init d 7 . 0.8

vmup_init a7
g_Nad-

o Naa- .

P_Cal d-

P_Cal a7 -

T T
base peak ttp APD25 APD50 APD75 APD90
Phenotype

This shows the proportion of phenotypic variance that is accounted for by each
genetic parameter. The effects of separate genes generally add up with very little
interaction. However, some loci show some dominance.

We recognize "time to peak" as being largely governed by the gene g_Na, with
some dominance effect. APD75 turns out to depend on two main genes, plus
another with moderate effect. APD90 has three strong effects and two smaller
ones.

Conversely, we see that some parameters affect mostly one phenotype, e.g. one
phase of the action potential, whereas others affect many. The sodium channel
[point to g_Na] governs the initial spike, but that also has consequences for later
stages of the action potential. On the other hand, this potassium channel [point to
g_Kto_f] affects repolarization only.

Each column in this plot explains variation in a single phenotypic variable, as has
been the tradition in quantitative genetics. The next example considers the joint
distribution of multiple phenotypes.
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Multivariate genotype-phenotype map

X loadings and Y loadings
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Quantitative genetics has until now focused on single-valued phenotypes, one at a
time. Dealing with multivariate phenotypes requires novel applications of
existing and new statistical tools. For instance, this partial least squares analysis
shows that the phenotypes "peak voltage" and "time to peak" are correlated with
the parameter g_Na, but in opposite directions. Four "genes" are responsible for
most of the phenotypic variation in this virtual experiment.

We recognize the negative correlation between peak amplitude and time to peak.
Also, we can see the decreasing correlation between "time to peak" and "action
potential duration" as repolarization proceeds [point to APD25-50-75-90].
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Genotype-Phenotype: R-squared

parameter

phenotype serca g _Cab g Na g Kto f g K1 g Ks g Kur g ClCa
apd.peak 91
apd.ttp 88 1
apd25 1 53 32 3 3
apd50 24 51 1 14
apd75 2 11 82
apdoe 3 4 88
ctdss.peak 53 3 9 27 3
ctdss.ttp 1 15 64 4
ctdss25 2 8 64 3 14
ctdss50 2 56 3 18
ctdss75 38 5 27 5 16
ctdss90 64 3 9 4 10
ctdi.peak 73 3 15 4
ctdi.ttp 98
ctdi25 95 1
ctdi5e 94 1
ctdi75s 93 1 3 1
ctdioe 93 2 3 1 ~
Tredelingsfigurer

Forskjell i additiv effekt pa ulike gen og ulike fenotyper

@rlite eksempel pa epistasi

Likevel ser vi igjen struktur i fenotypisk variasjon <=> additivitet
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Epistasis? Not much so far...

Variance decomposition (percent, ignoring <1%)

Order 1 Two-gene interactions
Phenotype Total A D Total AA AD DD
APpeak 100 92.0 7.9
APttp 100 96.2 3.5
APD25 99 92.7 5.8
APD50 95 90.0 5.0 5.1 4.5 0.5 0.0
APD75 97 94.2 3.3 2.5 2.2 0.3 0.0
APD90 98 95.9 2.0 2.1 1.9 0.2 0.0
Casspeak 99 95.2 4.2
Cassttp 97 943 29 2.8 2.6 0.2 0.0
CassD25 96 93.3 3.0 3.6 3.3 0.3 0.0
CassD50 96 92.1 3.5 4.4 4.0 04 0.0
CassD75 95 90.1 49 5.0 4.4 0.6 0.0
CassD90 96 90.8 5.2 4.0 3.5 0.5 0.0
Caipeak 99 96.1 3.0 0.9 0.9 0.1 0.0
Caittp 100 98.2 1.4
CaiD25 100 97.1 2.9
CaiD50 100 96.9 3.0
CaiD75 100 97.6 2.3
CaiD90 100 98.7 1.1
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small.

Sensitivity and elasticity

Sensitivities are df/dxi, where f is a phenotype and xi is a parameter

Elasticities are (df/f)/(dxi/xi), a dimensionless measure of "% change
in phenotype per % change in genotype", assuming the changes are

Phenotypes = columns, genotypic parameters = rows

Sensitivity (gradient)
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Workflow: design, simulate, summarize, analyze

Action potential of apex myocyte
0 30 - apex
Link genes 0 Vrax . M
.-
to parameters =
Parameter scenarios

High-dimensional
model output

Summarize phenotype Time (ms)
in relevant measures

Describe and identify o e

210 -50

90!
APDg, 0 10 20 30 40 50
-50 | ms

Transmembrane potential (mV)

-90

AR T BB g

. 3.54 6.87 mu Mean G cab
patterns: 0.47 0.96 a1 Additive effect of locus A "
ST H 0.02 0.02 d1 Dominance effect of locus A
Stat|St|Ca| analySIS -1.15 -0.90 a2 Additive effect of locus B

. . -0.21 -0.07 d2 Dominance effect of locus B
Causal explanation: -0.23 -0.07 iaa Additive x additive effect of loci A and B
= = -0.09 0.00 iad Additive x dominance effect of loci A and B
mechanisms in model

-0.07 -0.01 ida Dominance x additive effect of loci A and B
-0.03 -0.04 idd Dominance x dominance effect of loci A and B

(rinse and repeat) 66




Off-the-shelf, curated physiological models:
cellml.org

« & & » [#) # [3 ntip:/fwww.celml.org/models /bondarenko_sziget_bett_kim_rasmusson_2004_version08 | B -G B [ coooe Rar
.. ...
e|l° site map  accessibility
nce home | repository | wiki | tracker
S o Qsearch
biology. math. dta. kncwedge.
log in

you are here: home — model repository

About

Overview

Terms Of Use

Scope

Specifications
Current Development
Road map

Project Team
Publications

FAQ

Related Efforts

Use

Repository
Tools
Downloads
Tutorial
Notation
XML Guide
Electrophysiclogical
Signal Transduction
CellML 1.1
Best Practice

_| overview edit view math model metadata curation view cellml data rocedural code

A Computer Model for the Action Potential of Mouse Ventricular Myocytes

¥ Download Model (180Kb) Solve model in: (help)
PCEnv YYYY ©ISim

PCEnv Session
(What's this?)

COR XYY

Curation Status: Yryy

Model Documentation

Model Status

This version has been curated by Penny Noble from Oxford University and is known to run in COR and PCEnv. This model
represents the APICAL CELL variant as described in Bondarenko et al.'s 2004 paper and all units are consistent. The model is

able to reproduce the action potential traces from Figure 16 of the publication. This model has a PCEnv session file associated
with it.

Model Structure
Mathematical models, which describe cardiac action potentials, have been a valuable tool in enhancing our understanding of
the molecular mechanisms which underlie the physiological processes. The earliest cardiac models were based on the

pioneering work of Hodgkin and Huxley, who in 1952 published a mathematical model which described the Na™ and K™
currents in the giant squid axon (for more details, please see The Hodgkin-Huxley Squid Axon Model, 1952). Over time,




cGPtoolbox

e Open standards as building blocks

— HDF5 (used e.g. by NASA) for efficient storage, retrieval, navigation and subsetting
of huge data sets

— CellML model description: curated, consistent, documented (used by the Physiome
Project, cellml.org)

e Building on free and open source software

— Python and Numpy for high-level scripting, streamlined interfaces to HDF5, Sundials
(ODE solvers), R (statistical software)

— NDL, numerical differentiation library: sensitivity and interaction analysis
e cGPtoolbox: In-house development

HDF5 conventions for cGP models

Virtual genome: Recombination with realistic linkage maps, generating new
parameter sets for population studies of cGP models

User-friendly, scriptable Python wrappers for CellML, NDL, and Pysundials
Multivariate analyses of cGP models, combining existing R packages

68



Conclusions

e Bridging the gap: relating genetic and physiological observation
and modelling, with phenotypic correlation

e Clear causal link between observable physiological things and
processes, and phenotypic correlation

e cGP models exhibit similar phenomena and complexity as
empirical quantitative-genetic data

e Genetic effects are largely additive. Is life selected for
predictable offspring?

e Limits to computing power => need experimental design

— Must decide where to look; computational resources may be limiting
— Experimental design

Similarity to empirical work
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