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• Mathematical models describing how phenotypes arise from lower 

level processes

• Models have an articulated relation to genotypes

• Populations of dynamic systems connected to genetic maps and 

sequence information
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Left column: GP map phenomena we can deal with now in some sense

Right column: GP map phenomena that are still very challenging to deal with in 

mechanistic terms 

(Numbers are Google hits...)
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...a mapping from genotype space to phenotype space.
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Often, a single gene affects multiple traits, a phenomenon called 

pleiotropy. [point along axes phi1 and phi2].
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In this illustration, the action of gene a with respect to phenotype phi1 is 

additive...
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...while its effect on phenotype phi2 is nonadditive, the heterozygote being 

closer to the phenotype of (little a, little a).
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Many phenotypes are affected by several genes...
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Here, the effect of a single copy of little-b is independent of the genotype 

at locus a, ...
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...but the effect of another "little b" depends on the genetic background, a 

phenomenon called epistasis.

Functional epistasis is here used as a common term for describing 

situations where the phenotypic effect of a genetic substitution (on one or 

multiple loci) depends on the genetic background, i.e. on the state of other 

loci in the genotype
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The mapping from genotypes to phenotypes can be decomposed into 

multiple transformations. The parameters of a physiological model can 

themselves be viewed as phenotypes, so that there is a mapping from 

genotype space to parameter space to phenotype space. Each of these 

can be further decomposed into layers of submodels.
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The mapping from genotype to parameters to phenotypes can be 

complex...

Introduce the causally cohesive genotype-phenotype model (cGP)

- cohesive: having the power of cohering, ie the power of sticking 

together
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•The figure is a simplified version of the first figure in Lewontins excellent book 

from 1974

• Can be used to illustrate the current state of genetics theory as well as the 

genotype-phenotype map concept

• Describe the figure:

�� Treat genotypes and phenotypes as state variablesTreat genotypes and phenotypes as state variables

�� Study the transformationsStudy the transformations

�� TT11: the : the genotype to phenotype genotype to phenotype 
transition transition 
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transition transition 

�� TT22: natural selection, migration and : natural selection, migration and 
matingmating

�� TT33: genotypes underlying selected : genotypes underlying selected 

phenotypes phenotypes 

�� TT44: the laws of recombination and : the laws of recombination and 

segregationsegregation
• Population genetics theory is framed in genetic terms and make a caricature of 

the T1 mapping

• Quantitative genetics theory is framed in phenotypic terms and make a 

caricature of the T1 mapping

• Mark the T1 mapping and explain the GP map.
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Forced to get the dimensions right.
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The cellular action potential underlies important organ-level phenotypes such as 

the electrocardiogram. The heartbeat starts in the atria (■first upstroke), causing a 

dip in the ECG. The so-called QRS complex follows as ventricular cells activate 

(■second upstroke). Repolarization (■ downstroke and T wave) marks the end of 

the action potential and the heartbeat.

A mutation which ■prolongs the action potential may cause ■"long QT 

syndrome", increasing the risk of lethal arrhythmias. This is not always the case, 

however. Whether cellular anomalies propagate to the whole-heart level depends 

on the spatial dynamics of electrical activation at the tissue level. Next year we 

will study the genotype-phenotype map in detailed models of cell tissue and the 

whole-heart. Finally, the penetrance of long QT seems to depend on both modifier 
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whole-heart. Finally, the penetrance of long QT seems to depend on both modifier 

genes and environmental effects.

Figure 1. Electrical gradients in the myocardium can be detected on the body 

surface ECG. (a) An illustrative example of a single cardiac cycle detected as 

spatial and temporal electrical gradients on the ECG. The P wave is generated by 

the spread of excitation through the atria. The QRS complex represents 

ventricular activation and is followed by the T wave reflecting ventricular 

repolarization gradients. (b) Schematic representation of cellular electrical 

activity underlying the ECG (see text for details). Where downward arrows 

represent inward current and upward arrows represent outward current.



Realistic single-cell models can be quite complex genotype-phenotype maps in 

themselves. 

The parallels to our future work on the whole heart model in openCMISS is that 

we have a high dimensional phenotype that we need to summarize into something 

of clinical interest. There is also the duality of documenting the statistical pattern 

versus identifying actual mechanism. Two of the phenomena we have started 

looking at, are the effects of genotypic variation at one locus on the phenotype, 

and how such effects may modify the effect of variation at other loci. The latter 

phenomenon is called epistasis. Other phenomena of interest include pleiotropy, 

meaning that one gene affects several traits; penetrance, meaning that a genetic 

defect may not always show; and expressivity, meaning the degree of continuous defect may not always show; and expressivity, meaning the degree of continuous 

variability in the effect of the genetic difference. This is a good opportunity to 

validate the analysis methods we are going to be using later, while at the same 

time producing real biological insights. It will also bolster our confidence when 

using these methods on whole heart simulations. Perhaps single cell models can 

even illustrate some features of multiscale systems. Their phenotypes certainly 

form the interface up to the tissue level.
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(Figure 1 from Bondarenko et al. 2004, 

http://dx.doi.org/10.1152/ajpheart.00185.2003 )

We have been studying a fairly detailed model of a mouse heart cell. It describes 

the flow of ions across the cell membrane and between different compartments of 

the cell. This flow of ions achieves the two main function of the cell: To contract 

the heart muscle, and to propagate an electrical signal.

The cell "charges its battery" by moving many positive ions out of the cell fluid. 

Once it is charged, an electrical impulse will cause the cell to "fire", as ion Once it is charged, an electrical impulse will cause the cell to "fire", as ion 

channels open to allow rapid depolarization, producing a signal that propagates to 

neighbouring cells.

Muscle contraction, on the other hand, is triggered by the release of calcium into 

the cytosol. Initially, calcium is sequestered into special compartments, until 

depolarization triggers its release.

Now, I'm no expert on this, but I'll give it my best shot. The Bondarenko model 

describes the flow of ions in and out of the cell, and the resulting difference in 

electrical potential between the inside and the outside of the cell. This is called 

the transmembrane potential, and its time trajectory is what's called the action 

potential of the cell.

The major ions in the model are calcium, sodium, and potassium. Ion channels 

are specialized proteins that help or hinder the passage of ions across the cell 

membrane, opening or closing in response to conditions such as ion 

concentrations or transmembrane potential. Ion channels differ in their thresholds, 
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Complex gene interactions occur even within a single cell. Heart cells generate electrical 

impulses by varying the permeability of the ■cell membrane to ■sodium, potassium and 

calcium (Na+, K+, Ca2+) ions. Special proteins called ■ion channels open and close in 

response to changes in voltage or ion concentrations, determining whether ions are 

permitted to move along electrical or osmotic gradients. The complex interplay and 

timing of the various ion currents determine the time-course of the transmembrane 

voltage. This phenotype is so important that it has its own name: ■the action potential.

This is a compact example of multilevel phenotypes arising from complex gene 

interaction. ►■Genes code for different subunits which combine ■to form ion channels. 

Mutations may affect the conductance of ion channels, but also their opening and closing 
speed or voltage dependence. Multiple channels contribute to the ■concentration of each 

ion species, which in turn contribute to the ■transmembrane voltage. ►The resulting 
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ion species, which in turn contribute to the ■transmembrane voltage. ►The resulting 

electrical impulse is the cell's primary interface to the surrounding tissue. This phenotype, 

the time-course of the transmembrane potential, is so important that it has its own name: 

the ■action potential.

Figure 1 from Bondarenko VE, Szigeti GP, Bett GCL, Kim S-J, Rasmusson RL (2004) 

Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart 

Circ Physiol 287(3):H1378–1403 http://dx.doi.org/10.1152/ajpheart.00185.2003

Figure 1 from Nerbonne JM (2004) Studying cardiac arrhythmias in the mouse-a 

reasonable model for probing mechanisms? Trends Cardiovasc Med 14(3):83–93 

http://dx.doi.org/10.1016/j.tcm.2003.12.006



The time-course of the transmembrane voltage is called the action potential. The 

initial stimulus triggers rapid depolarization of the cell, and this signal is what 

propagates to neighbouring cells.

However, depolarization also triggers calcium release into the cytosol. This 

process is slower, as the muscle fibers need time to react. Meanwhile, the cell 

repolarizes, getting ready for the next action potential.

The action potential and calcium transient result from the combined action of 

many different ion channels, each coded for by specific genes.many different ion channels, each coded for by specific genes.
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The major state variables in the model are the transmembrane potential, the ion 

concentrations, and the state of the ion channels. Ion channels are often modeled 

as being in one of several possible states, one  of which is "open". A Markov 

chain model is a representation of the proportion of channels in each of these 

states and the transition rates between them. All of this may be an accurate 

representation of the number of subunits in the ion channel. But more often, it is 

just something to imitate the inertia and behaviour of the cannel proteins on 

average.



Several hundred known ion-channel mutations are associated with cardiac 

arrhythmia, and their function is beginning to be well understood. This (lower 

right) is looking out through an ion channel consisting of four identical subunits. 

Each subunit has a voltage-sensing part with positively charged amino acid 

residues. The sensor slides across the cell membrane in response to voltage 

changes, pushing on a part of the pore to close the channel.
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This is just part of the listing of the model parameters and equations of the 

Bondarenko model.



This graph illustrates how we can summarize the action potential (the time 

trajectory) in a few key numbers: the resting and peak potentials, and the time 

required to get half way back down. The phenotype depends on parameter values, 

as illustrated here for cells from two different parts of the heart. One is the apex 

(the tip of the heart); the other is the septum (the dividing wall). Assuming that 

specific loci code for specific parameters, we may simulate phenotypic variation 

reflecting genetic variation, and the statistics on it. On the other hand, we can 

detail the mechanism by which the statistical pattern arises.



Many genetic analyses require that the high-dimensional phenotype of a cGP 

model be summarized in a few key statistics, such as the action potential duration 

to 90% repolarization. Similar measures are APD75, APD50, and APD25, as well 

as the time to peak, and peak voltage.

(Maybe skip this: At the subcellular level, ion-channel phenotypes can be 

described by total current during the action potential, or the timing and amplitude 

of the peak and trough.)

The next slide shows the distribution of each of these phenotypes, for six and a The next slide shows the distribution of each of these phenotypes, for six and a 

half thousand parameter sets resulting from "genetic" variation in eight 

parameters.

(This model is based on the Bondarenko 2004 model with modifications to the 

Cai dynamics. Specifically, the L-type Ca current, SERCA, NCX and Ryanodine 

receptor have been fitted to experimental data from our collaborators, and 

parameters for the background Ca current and PMCA have been adjusted 

accordingly.)
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Many genetic analyses require that the high-dimensional phenotype of a cGP 

model be summarized in a few key statistics, such as the action potential duration 

to 90% repolarization. Similar measures are APD75, APD50, and APD25, as well 

as the time to peak, and peak voltage.

(Maybe skip this: At the subcellular level, ion-channel phenotypes can be 

described by total current during the action potential, or the timing and amplitude 

of the peak and trough.)

The next slide shows the distribution of each of these phenotypes, for six and a The next slide shows the distribution of each of these phenotypes, for six and a 

half thousand parameter sets resulting from "genetic" variation in eight 

parameters.
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The effect of a mutation may differ between cell types. This mutation is linked to 

Brugada syndrome, which manifests as elevation of the ST segment of the ECG. 

However, the action potential is roughly normal in mutant midmyocardial cells 

(thin line), whereas epicardial cells show dramatic alternation between delayed 

and near-absent plateau phases of the action potential. The reason is that the 

affected ion channel is less expressed in M cells.

Figure 8. Effects of1795insD on transmural voltage gradients and APD. A, At fast 

rates, mutation-induced changes in epicardial AP morphologies (thick line) cause 

dispersion of plateau potentials and a voltage gradient (Vm, arrows) from 
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dispersion of plateau potentials and a voltage gradient (Vm, arrows) from 

epicardial to M cell (thin line). This gradient will manifest on the ECG as ST-

segment elevation, indicative of Brugada syndrome. For coved-dome morphology 

of the epicardial AP, Vm is reversed during phase 3 repolarization, which can 

cause T-wave inversion on the ECG. B, At a slow rate (CL=850 ms), mutation 

prolongs APD in M cells (thick line) compared with WT (thin line). Delay in 

repolarization (APD60 ms) is reflected as QT prolongation on the ECG, a 

hallmark of LQT syndrome.
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Different ion channels are responsible for different parts of the action potential. 

The upstroke is mainly due to the sodium current, whereas various potassium 

currents are important in repolarization.

Now, a mutation may change the biochemical properties of an ion channel. When 

model parameters change, the phenotypes change too...
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...Our aim to to understand how and why phenotypes vary in response to genetic 

variation in low-level parameters.

For simplicity, we assume that eight "genes" code for one ion channel each. For 

each gene, genotype "big A, little a" codes for the normal amount of ion channels, 

whereas one homozygote has 50 percent less and the other has 50 percent more. 

Variation in one gene then gives three different parameter scenarios; variation in 

two genes gives nine scenarios; and so on with successive splitting in threes. For 

example, the calcium transient shows a strong effect of a single gene (non-

additive, it seems), and minor effects of other genes.additive, it seems), and minor effects of other genes.
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It is interesting to see how phenotypes differ in the number of underlying genes. 

The time to 90% repolarization, called APD90, is a fairly polygenic trait, showing 

quite continuous variation. In contrast, APD75 has a nine-modal distribution 

suggesting two underlying genes. And the time-to-peak phenotype appears to be 

governed largely by a single gene.

[The partly broken lines are empirical cumulative distribution functions, ECDF. 

Areas show kernel density estimates.]
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This is a scatterplot matrix with one panel for each pair of phenotypes. Currently, 

we see the phenotypes for the baseline parameter scenario.

(APD90 = action potential duration to 90% repolarization. "ttp" = time to peak. 

"peak" = peak value. CTDi = calcium transient duration phenotypes (the "i"means 

in cytosol) analogous to APD.)
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Varying parameter P_CaL (which sets the maximum of the L-type calcium 

current) gives us three parameter scenarios. APDttp and APDpeak are not much 

affected by this variation (since they occur earlier than the calcium transient), 

whereas the other phenotypes do respond to this parameter variation.
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Adding variation in another parameter, we get 3x3 = 9 parameter combinations. 

Parameter g_Na sets the maximum of the sodium current, whose main role is in 

the upstroke at the start of the action potential. There isn't much effect on CTD 

phenotypes, but quite a bit on APD.
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Adding variation in another calcium current: SERCA, inflow to the calcium 

storage compartments. The 3x3x3=27 parameter scenarios cluster into 3 blobs in 

the APDttp vs APDpeak panel, 9 blobs for CTDipeak vs CTDittp, and 27 distinct 

points in the upper left panels.
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Eventually, 3^8 = 6561 parameter scenarios appear as a fairly smooth distribution 

for many phenotype pairs, although some phenotypes are clearly determined 

mostly by one  (APDpeak) or two (CTDipeak) of the selected parameters.
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Each panel shows the covariation between two phenotypes, resulting from the 

simulated genotypic variation in model parameters. Each parameter set is one 

point in each panel. Here the several thousand points are summarized as densities, 

progressing from black to magenta.

We see how the added dimension helps account for the marginal distributions 

[point along diagonal]. For instance, these two peaks [point to ttp] resolve into 

three groups of points when we consider "peak voltage" and "time to peak" at 

once.

These phenotypes show a strong negative correlation: A fast upstroke gives a tall 

peak. We also see strong correlation between action potential duration for 

successive percentages of repolarization [point to first off-diagonal]. However, 

there is little correlation between the early and late phases [point to ttp vs 

APD90].

The next slide relates this multivariate phenotype to genes.
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This slide zooms in on one pair of phenotypes and shows how the clusters reflect 

specific "genotypes". (The phenotype on the y axis is calcium transient duration 

in the "dyadic subspace", which wasn't included on the previous slides. It serves 

to illustrate the point, though.)

Upper left: uncolored points. Lower left: Points colored by value of SERCA. 

Lower middle: Points colored by value of g_Na. Lower right: Separate panels for 

each of the 9 combinations of SERCA x g_Na. Upper right: coloring by g_Kto_f 

identifies the outlying blob in each panel.
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This shows the proportion of phenotypic variance that is accounted for by each 

genetic parameter. The effects of separate genes generally add up with very little 

interaction. However, some loci show some dominance.

We recognize "time to peak" as being largely governed by the gene g_Na, with 

some dominance effect. APD75 turns out to depend on two main genes, plus 

another with moderate effect. APD90 has three strong effects and two smaller 

ones.

Conversely, we see that some parameters affect mostly one phenotype, e.g. one Conversely, we see that some parameters affect mostly one phenotype, e.g. one 

phase of the action potential, whereas others affect many. The sodium channel 

[point to g_Na] governs the initial spike, but that also has consequences for later 

stages of the action potential. On the other hand, this potassium channel [point to 

g_Kto_f] affects repolarization only.

Each column in this plot explains variation in a single phenotypic variable, as has 

been the tradition in quantitative genetics. The next example considers the joint 

distribution of multiple phenotypes.
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Quantitative genetics has until now focused on single-valued phenotypes, one at a 

time. Dealing with multivariate phenotypes requires novel applications of 

existing and new statistical tools. For instance, this partial least squares analysis 

shows that the phenotypes "peak voltage" and "time to peak" are correlated with 

the parameter g_Na, but in opposite directions. Four "genes" are responsible for 

most of the phenotypic variation in this virtual experiment.

We recognize the negative correlation between peak amplitude and time to peak. 

Also, we can see the decreasing correlation between "time to peak" and "action 

potential duration" as repolarization proceeds [point to APD25-50-75-90].potential duration" as repolarization proceeds [point to APD25-50-75-90].
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Tredelingsfigurer

Forskjell i additiv effekt på ulike gen og ulike fenotyper

Ørlite eksempel på epistasi

Likevel ser vi igjen struktur i fenotypisk variasjon <=> additivitet
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Similarity to empirical work
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